Question #158748

Solve the differential equation dy/dx = 2y+3e^x with x0 = 0, y0 = 0, using Taylor’s series method of order 2 to obtain the value of y at x = 0.1, 0.2.


1
Expert's answer
2021-01-29T14:07:29-0500

y=2y+3exy'=2y+3e^x

by the conditions of the problem, \text {by the conditions of the problem, }

the order of the Taylor series is 2\text{the order of the Taylor series is 2}

y(x)y(x0)+y(x0)1!(xx0)+y(x0)2!(xx0)2y(x)\approx{y(x_0)}+\frac{y'(x_0)}{1!}(x-x_0)+\frac{y''(x_0)}{2!}(x-x_0)^2

by the conditions of the problem x0=0;y0=y(x0)=0\text {by the conditions of the problem }x_0=0 ;y_0=y(x_0)=0

y(x)y(0)1!(x)+y(0)2!(x)2y(x)\approx\frac{y'(0)}{1!}(x)+\frac{y''(0)}{2!}(x)^2

y(0)=2y(0)+3e0=3y'(0)=2y(0)+3e^0=3

y=(y)=2y+(3ex)=2y+3exy''=(y')'=2y'+(3e^x)'=2y'+3e^x

y(0)=2y(0)+3e0=9y''(0)=2y'(0)+3e^0=9

y(x)3x+92x2y(x)\approx3x+\frac{9}{2}x^2

y(0.1)=30.1+4.50.12=0.345y(0.1)= 3*0.1+4.5*0.1^2=0.345

y(0.2)=30.2+4.50.22=0.78y(0.2)= 3*0.2+4.5*0.2^2=0.78

Answer:y(0.1)=0.345; y(0.2)=0.78







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS