y′=2y+3ex
by the conditions of the problem,
the order of the Taylor series is 2
y(x)≈y(x0)+1!y′(x0)(x−x0)+2!y′′(x0)(x−x0)2
by the conditions of the problem x0=0;y0=y(x0)=0
y(x)≈1!y′(0)(x)+2!y′′(0)(x)2
y′(0)=2y(0)+3e0=3
y′′=(y′)′=2y′+(3ex)′=2y′+3ex
y′′(0)=2y′(0)+3e0=9
y(x)≈3x+29x2
y(0.1)=3∗0.1+4.5∗0.12=0.345
y(0.2)=3∗0.2+4.5∗0.22=0.78
Answer:y(0.1)=0.345; y(0.2)=0.78
Comments