Question #148086
Derive a formula for
n

i= i² a telescoping sum with terms f(I) = i³


n
∑ (3i-1)²
i=1


n
∑ (2i + 1)²
i=1
1
Expert's answer
2020-12-03T07:46:13-0500

i=1ni\sum_{i=1}^{n} i

= 1+2+3+......+n

= n(n+1)/2 by formula of sum of AP


(i+1)³ - i³ = 3i²+3i+1

i=1n(i+1)3i3=i=1n3i2+i=1n3i+i=1n1\sum_{i=1}^{n} (i+1)^3 -i^3 = \\\sum_{i=1}^{n} 3i²+\sum_{i=1}^{n} 3i + \sum_{i=1}^{n} 1

=>

i=1n(i+1)3i3=3i=1ni2+3i=1ni+i=1n1\sum_{i=1}^{n} (i+1)^3 -i^3 =\\ 3\sum_{i=1}^{n} i²+3\sum_{i=1}^{n} i + \sum_{i=1}^{n} 1

=>

2³-1³+3³-2³+4³-3³....(n+1)³-n³ =

3i=1ni2+3i=1ni+i=1n13\sum_{i=1}^{n} i²+3\sum_{i=1}^{n} i + \sum_{i=1}^{n} 1

=>

(i+1)³ - i³ = 3i=1ni2+3i=1ni+i=1n13\sum_{i=1}^{n} i²+3\sum_{i=1}^{n} i + \sum_{i=1}^{n} 1

So

3i=1ni2=(n+1)313i=1nii=1n13\sum_{i=1}^{n} i² \\= (n+1)³ - 1 - 3\sum_{i=1}^{n} i - \sum_{i=1}^{n} 1

= n³ + 3n² + 3n + 1 - 1 - 3n(n+1)/2 -n

= 2n3+3n2+n2\frac{2n³+3n²+n}{2}

= n(n+1)(2n+1)2\frac{n(n+1)(2n+1)}{2}

So I=1ni2=\sum_{I=1}^{n} i² = n(n+1)(2n+1)6\frac{n(n+1)(2n+1)}{6}


Now

(i+1)⁴ - i⁴= 4i³+6i²+4i+1

1n(i+1)4i4=41ni3+61ni2+41ni+1n1\sum_{1}^{n}{(i+1)⁴ - i⁴}= 4\sum_{1}^{n} i³+6\sum_{1}^{n} i²+4\sum _{1}^{n}i+\sum_{1}^{n} 1

=> 2⁴-1⁴+3⁴-2⁴.....(n+1)⁴-n⁴

= 41ni3\sum_{1}^{n} i³ + 6n(n+1)(2n+1)6\frac{n(n+1)(2n+1)}{6} + 4 n(n+1)2\frac{n(n+1)}{2} +n

=> 41ni3\sum_{1}^{n} i³

= (n+1)⁴-1-n(n+1)(2n+1) - 2n² - 2n - n

= (n+1)⁴ - (n+1)(2n²+n+2n+1)

= (n+1)⁴ - (n+1)(2n+1)(n+1)

= (n+1)²(n²+2n+1-2n-1)

= n²(n+1)²

So

1ni3\sum_{1}^{n} i³ = [n(n+1)2]2[\frac{n(n+1)}{2}]^2


i=1n(3i1)2\sum_{i=1}^{n} (3i-1)² =i=1n(9i26i+1)=\sum_{i=1}^{n} (9i²-6i+1)

=9i=1ni26i=1ni+i=1n1=9\sum_{i=1}^{n} i²-6\sum_{i=1}^{n} i + \sum_{i=1}^{n} 1

= 9 n(n+1)(2n+1)6\frac{n(n+1)(2n+1)}{6} - 6 n(n+1)2\frac{n(n+1)}{2} + n

= n(6n2+3n1)2\frac{n(6n²+3n-1)}{2}


i=1n(2i+1)2\sum_{i=1}^{n} (2i+1)²

= i=1n(4i2+4i+1)\sum_{i=1}^{n} (4i²+4i+1)

= 4i=1ni2+4i=1ni+i=1n14\sum_{i=1}^{n} i²+4\sum_{i=1}^{n} i + \sum_{i=1}^{n} 1

= 4n(n+1)(2n+1)6\frac{n(n+1)(2n+1)}{6} + 4n(n+1)2\frac{n(n+1)}{2} + n

= n(4n2+12n+11)3\frac{n(4n²+12n+11)}{3}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS