∑i=1ni
= 1+2+3+......+n
= n(n+1)/2 by formula of sum of AP
(i+1)³ - i³ = 3i²+3i+1
∑i=1n(i+1)3−i3=∑i=1n3i2+∑i=1n3i+∑i=1n1
=>
∑i=1n(i+1)3−i3=3∑i=1ni2+3∑i=1ni+∑i=1n1
=>
2³-1³+3³-2³+4³-3³....(n+1)³-n³ =
3∑i=1ni2+3∑i=1ni+∑i=1n1
=>
(i+1)³ - i³ = 3∑i=1ni2+3∑i=1ni+∑i=1n1
So
3∑i=1ni2=(n+1)3−1−3∑i=1ni−∑i=1n1
= n³ + 3n² + 3n + 1 - 1 - 3n(n+1)/2 -n
= 22n3+3n2+n
= 2n(n+1)(2n+1)
So ∑I=1ni2= 6n(n+1)(2n+1)
Now
(i+1)⁴ - i⁴= 4i³+6i²+4i+1
∑1n(i+1)4−i4=4∑1ni3+6∑1ni2+4∑1ni+∑1n1
=> 2⁴-1⁴+3⁴-2⁴.....(n+1)⁴-n⁴
= 4∑1ni3 + 66n(n+1)(2n+1) + 4 2n(n+1) +n
=> 4∑1ni3
= (n+1)⁴-1-n(n+1)(2n+1) - 2n² - 2n - n
= (n+1)⁴ - (n+1)(2n²+n+2n+1)
= (n+1)⁴ - (n+1)(2n+1)(n+1)
= (n+1)²(n²+2n+1-2n-1)
= n²(n+1)²
So
∑1ni3 = [2n(n+1)]2
∑i=1n(3i−1)2 =∑i=1n(9i2−6i+1)
=9∑i=1ni2−6∑i=1ni+∑i=1n1
= 9 6n(n+1)(2n+1) - 6 2n(n+1) + n
= 2n(6n2+3n−1)
∑i=1n(2i+1)2
= ∑i=1n(4i2+4i+1)
= 4∑i=1ni2+4∑i=1ni+∑i=1n1
= 46n(n+1)(2n+1) + 42n(n+1) + n
= 3n(4n2+12n+11)
Comments