"\\sum_{i=1}^{n} i"
= 1+2+3+......+n
= n(n+1)/2 by formula of sum of AP
(i+1)³ - i³ = 3i²+3i+1
"\\sum_{i=1}^{n} (i+1)^3 -i^3 = \\\\\\sum_{i=1}^{n} 3i\u00b2+\\sum_{i=1}^{n} 3i + \\sum_{i=1}^{n} 1"
=>
"\\sum_{i=1}^{n} (i+1)^3 -i^3 =\\\\ 3\\sum_{i=1}^{n} i\u00b2+3\\sum_{i=1}^{n} i + \\sum_{i=1}^{n} 1"
=>
2³-1³+3³-2³+4³-3³....(n+1)³-n³ =
"3\\sum_{i=1}^{n} i\u00b2+3\\sum_{i=1}^{n} i + \\sum_{i=1}^{n} 1"
=>
(i+1)³ - i³ = "3\\sum_{i=1}^{n} i\u00b2+3\\sum_{i=1}^{n} i + \\sum_{i=1}^{n} 1"
So
"3\\sum_{i=1}^{n} i\u00b2 \\\\= (n+1)\u00b3 - 1 - 3\\sum_{i=1}^{n} i - \\sum_{i=1}^{n} 1"
= n³ + 3n² + 3n + 1 - 1 - 3n(n+1)/2 -n
= "\\frac{2n\u00b3+3n\u00b2+n}{2}"
= "\\frac{n(n+1)(2n+1)}{2}"
So "\\sum_{I=1}^{n} i\u00b2 =" "\\frac{n(n+1)(2n+1)}{6}"
Now
(i+1)⁴ - i⁴= 4i³+6i²+4i+1
"\\sum_{1}^{n}{(i+1)\u2074 - i\u2074}= 4\\sum_{1}^{n} i\u00b3+6\\sum_{1}^{n} i\u00b2+4\\sum _{1}^{n}i+\\sum_{1}^{n} 1"
=> 2⁴-1⁴+3⁴-2⁴.....(n+1)⁴-n⁴
= 4"\\sum_{1}^{n} i\u00b3" + 6"\\frac{n(n+1)(2n+1)}{6}" + 4 "\\frac{n(n+1)}{2}" +n
=> 4"\\sum_{1}^{n} i\u00b3"
= (n+1)⁴-1-n(n+1)(2n+1) - 2n² - 2n - n
= (n+1)⁴ - (n+1)(2n²+n+2n+1)
= (n+1)⁴ - (n+1)(2n+1)(n+1)
= (n+1)²(n²+2n+1-2n-1)
= n²(n+1)²
So
"\\sum_{1}^{n} i\u00b3" = "[\\frac{n(n+1)}{2}]^2"
"\\sum_{i=1}^{n} (3i-1)\u00b2" "=\\sum_{i=1}^{n} (9i\u00b2-6i+1)"
"=9\\sum_{i=1}^{n} i\u00b2-6\\sum_{i=1}^{n} i + \\sum_{i=1}^{n} 1"
= 9 "\\frac{n(n+1)(2n+1)}{6}" - 6 "\\frac{n(n+1)}{2}" + n
= "\\frac{n(6n\u00b2+3n-1)}{2}"
"\\sum_{i=1}^{n} (2i+1)\u00b2"
= "\\sum_{i=1}^{n} (4i\u00b2+4i+1)"
= "4\\sum_{i=1}^{n} i\u00b2+4\\sum_{i=1}^{n} i + \\sum_{i=1}^{n} 1"
= 4"\\frac{n(n+1)(2n+1)}{6}" + 4"\\frac{n(n+1)}{2}" + n
= "\\frac{n(4n\u00b2+12n+11)}{3}"
Comments
Leave a comment