Answer to Question #147655 in Calculus for liam donohue

Question #147655
Suppose that
f(x)=x3−6x2+10.
(A) List the x values of all local maxima of f. If there are no local maxima, enter 'NONE'.
x values of local maximums =
(B) List the x values of all local minima of f. If there are no local minima, enter 'NONE'.
x values of local minimums =
(C) List the x values of all the inflection points of f. If there are no inflection points, enter 'NONE'.
x values of inflection points =
1
Expert's answer
2020-12-10T14:06:54-0500

f(x)=x36x2+10,f(x)=3x212x.f(x) = x^3-6x^2+10,\\ f'(x) = 3x^2 - 12x.

We should determine points where f(x)=0.f'(x) = 0.

3x212x=0,3x(x4)=0x=0  or  x=4.3x^2 - 12x = 0, \\ 3x\cdot(x-4) = 0 \Leftrightarrow x = 0 \; \text{or} \; x = 4.

Let us determine the sign of derivative:

f(x)>0    if    x<0,f(x)<0    if    0<x<4,f(x)>0    if    x>4.f'(x) > 0 \;\; \text{if}\;\; x < 0, \\ f'(x) < 0 \;\; \text{if}\;\; 0< x < 4, \\ f'(x) > 0 \;\; \text{if}\;\; x >4.

Therefore,

f(x)    if    x<0,f(x)0    if    0<x<4,f(x)0    if    x>4.f(x) \nearrow \;\; \text{if}\;\; x < 0, \\ f(x) \searrow 0 \;\; \text{if}\;\; 0< x < 4, \\ f(x) \nearrow 0 \;\; \text{if}\;\; x >4.

Therefore, x = 0 is the point of local maximum and x = 4 is the point of local minimum.

(A) x = 0

(B) x = 4

(C) NONE


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment