f(x)=x3−6x2+10,f′(x)=3x2−12x.
We should determine points where f′(x)=0.
3x2−12x=0,3x⋅(x−4)=0⇔x=0orx=4.
Let us determine the sign of derivative:
f′(x)>0ifx<0,f′(x)<0if0<x<4,f′(x)>0ifx>4.
Therefore,
f(x)↗ifx<0,f(x)↘0if0<x<4,f(x)↗0ifx>4.
Therefore, x = 0 is the point of local maximum and x = 4 is the point of local minimum.
(A) x = 0
(B) x = 4
(C) NONE
Comments
Leave a comment