"f(x) = x^3-6x^2+10,\\\\\nf'(x) = 3x^2 - 12x."
We should determine points where "f'(x) = 0."
"3x^2 - 12x = 0, \\\\\n3x\\cdot(x-4) = 0 \\Leftrightarrow x = 0 \\; \\text{or} \\; x = 4."
Let us determine the sign of derivative:
"f'(x) > 0 \\;\\; \\text{if}\\;\\; x < 0, \\\\\nf'(x) < 0 \\;\\; \\text{if}\\;\\; 0< x < 4, \\\\\nf'(x) > 0 \\;\\; \\text{if}\\;\\; x >4."
Therefore,
"f(x) \\nearrow \\;\\; \\text{if}\\;\\; x < 0, \\\\\nf(x) \\searrow 0 \\;\\; \\text{if}\\;\\; 0< x < 4, \\\\\nf(x) \\nearrow 0 \\;\\; \\text{if}\\;\\; x >4."
Therefore, x = 0 is the point of local maximum and x = 4 is the point of local minimum.
(A) x = 0
(B) x = 4
(C) NONE
Comments
Leave a comment