Evaluate the definite integral:
∫278xdx\int^7_2\sqrt{8x} dx∫278xdx = 22∫27xdx=22(2x33∣27)=22(2733−2233)2\sqrt{2}\int^7_2 \sqrt{x}dx=2\sqrt{2}(\frac{2\sqrt{x^3}}{3}\mid^7_2)=2\sqrt{2}(\frac{2\sqrt{7^3}}{3}-\frac{2\sqrt{2^3}}{3})22∫27xdx=22(32x3∣27)=22(3273−3223)
22(2733−2233)=2814−832\sqrt{2}(\frac{2\sqrt{7^3}}{3}-\frac{2\sqrt{2^3}}{3})=\frac{28\sqrt{14}-8}{3}22(3273−3223)=32814−8
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments