Combinethecriticalpoint(s):x=0withthedomain 
 
f(x)=e−7x2 
f′(x)=−14xe−7x2
−14xe−7x2=0 
x=0 
Thefunctionmonotoneintervalsare: −∞<x<0 , 0<x<∞ 
Summaryofthemonotoneintervalsbehavior :
 1) −∞<x<0⇒increasing⇒+  
 2) 0<x<∞ ⇒decreasing⇒− 
 3) x=0⇒max⇒0 
Plugtheextremepointx=0intoe−7x2⇒y=1 
maximum(0,1) 
\mathrm{If\:}f\:''\left(x\right)>0\mathrm{\:then\:}f\left(x\right)\mathrm{\:concave\:upwards.} 
\mathrm{If\:}f\:''\left(x\right)<0\mathrm{\:then\:}f\left(x\right)\mathrm{\:concave\:downwards.} 
f′′(x)=0 
x=(−1414,e1) 
and at
x=(1414,e1) 
                             
Comments