Let "f(x)=e^{-7x^2}" .
Then f(x) has a relative minimum at
x=
a relative maximum at
x=
and inflection points at
x=
and at
x=
Write DNE if any of the above do not exist. Write the inflection points (if any) in numerical order, smallest first.
"\\mathrm{Combine\\:the\\:critical\\:point\\left(s\\right):}\\:x=0\\:\\mathrm{with\\:the\\:domain}"
"f(x)=e^{-7x^2}"
"f'(x)=-14xe^{-7x^2}"
"-14xe^{-7x^2}=0"
"x=0"
"\\mathrm{The\\:function\\:monotone\\:intervals\\:are:}" "-\\infty \\:<x<0" , "0<x<\\infty \\:"
"Summary\\:of\\:the\\:monotone\\:intervals\\:behavior" :
1) "-\\infty \\:<x<0\\Rightarrow increasing\\Rightarrow+"
2) "0<x<\\infty \\:" "\\Rightarrow decreasing\\Rightarrow -"
3) "x=0 \\Rightarrow max \\Rightarrow0"
"\\mathrm{Plug\\:the\\:extreme\\:point}\\:x=0\\:\\mathrm{into}\\:e^{-7x^2}\\quad \\Rightarrow \\quad \\:y=1"
"\\mathrm{maximum}\\left(0,\\:1\\right)"
"\\mathrm{If\\:}f\\:''\\left(x\\right)>0\\mathrm{\\:then\\:}f\\left(x\\right)\\mathrm{\\:concave\\:upwards.}"
"\\mathrm{If\\:}f\\:''\\left(x\\right)<0\\mathrm{\\:then\\:}f\\left(x\\right)\\mathrm{\\:concave\\:downwards.}"
"f''(x)=0"
x="\\left(-\\frac{\\sqrt{14}}{14},\\:\\frac{1}{\\sqrt{e}}\\right)"
and at
x="\\left(\\frac{\\sqrt{14}}{14},\\:\\frac{1}{\\sqrt{e}}\\right)"
Comments
Leave a comment