C o m b i n e t h e c r i t i c a l p o i n t ( s ) : x = 0 w i t h t h e d o m a i n \mathrm{Combine\:the\:critical\:point\left(s\right):}\:x=0\:\mathrm{with\:the\:domain} Combine the critical point ( s ) : x = 0 with the domain
f ( x ) = e − 7 x 2 f(x)=e^{-7x^2} f ( x ) = e − 7 x 2
f ′ ( x ) = − 14 x e − 7 x 2 f'(x)=-14xe^{-7x^2} f ′ ( x ) = − 14 x e − 7 x 2
− 14 x e − 7 x 2 = 0 -14xe^{-7x^2}=0 − 14 x e − 7 x 2 = 0
x = 0 x=0 x = 0
T h e f u n c t i o n m o n o t o n e i n t e r v a l s a r e : \mathrm{The\:function\:monotone\:intervals\:are:} The function monotone intervals are : − ∞ < x < 0 -\infty \:<x<0 − ∞ < x < 0 , 0 < x < ∞ 0<x<\infty \: 0 < x < ∞
S u m m a r y o f t h e m o n o t o n e i n t e r v a l s b e h a v i o r Summary\:of\:the\:monotone\:intervals\:behavior S u mma ry o f t h e m o n o t o n e in t er v a l s b e ha v i or :
1) − ∞ < x < 0 ⇒ i n c r e a s i n g ⇒ + -\infty \:<x<0\Rightarrow increasing\Rightarrow+ − ∞ < x < 0 ⇒ in cre a s in g ⇒ +
2) 0 < x < ∞ 0<x<\infty \: 0 < x < ∞ ⇒ d e c r e a s i n g ⇒ − \Rightarrow decreasing\Rightarrow - ⇒ d ecre a s in g ⇒ −
3) x = 0 ⇒ m a x ⇒ 0 x=0 \Rightarrow max \Rightarrow0 x = 0 ⇒ ma x ⇒ 0
P l u g t h e e x t r e m e p o i n t x = 0 i n t o e − 7 x 2 ⇒ y = 1 \mathrm{Plug\:the\:extreme\:point}\:x=0\:\mathrm{into}\:e^{-7x^2}\quad \Rightarrow \quad \:y=1 Plug the extreme point x = 0 into e − 7 x 2 ⇒ y = 1
m a x i m u m ( 0 , 1 ) \mathrm{maximum}\left(0,\:1\right) maximum ( 0 , 1 )
\mathrm{If\:}f\:''\left(x\right)>0\mathrm{\:then\:}f\left(x\right)\mathrm{\:concave\:upwards.}
\mathrm{If\:}f\:''\left(x\right)<0\mathrm{\:then\:}f\left(x\right)\mathrm{\:concave\:downwards.}
f ′ ′ ( x ) = 0 f''(x)=0 f ′′ ( x ) = 0
x=( − 14 14 , 1 e ) \left(-\frac{\sqrt{14}}{14},\:\frac{1}{\sqrt{e}}\right) ( − 14 14 , e 1 )
and at
x=( 14 14 , 1 e ) \left(\frac{\sqrt{14}}{14},\:\frac{1}{\sqrt{e}}\right) ( 14 14 , e 1 )
Comments