By Leibniz's rule, we know that if
f(x)=∫ϕψf(t)dt
Then f′(x)=f(ψ(x)).ψ′(x)−f(ϕ(x)).ϕ′(x)........(1)
Now given that,f(x)=∫0x(t3+7t2+4)......(2)
Comparing (2) with (1) we get,
ψ(x)=x,ϕ(x)=0,
f(t)=t3+7t2+4
Therefore by Leibniz's rule we have,
f′(x)=f(ψ(x)).ψ′(x)−f(ϕ(x)).ϕ′(x)
So,f′(x)=(x3+7x2+4).(1)−(0).(0)=x3+7x2+4
Therefore, f′′(x)=d/dx(x3+7x2+4)=(3x2+14x)
So required answer is f′′(x)=3x2+14x
Comments
Leave a comment