"\\displaystyle(a).\\\\\n\ns(t) = -16t^2 + 200t\\\\\n\n\\begin{aligned}\ns(6) &= -16(6)^2 + 200(6) \n\\\\&= 1200 - 576 = 624\\,\\textsf{fts}\n\\end{aligned}\\\\\n\n\n(b)\\\\\n\\textsf{To determine the average velocity}\\\\\n\\textsf{of the particle between}\\, 1.0 \\, s\\, \\, \\textsf{and}\\,6.0 \\,s,\\\\\n\\textsf{we calculate the values of}\\\\\ns(1.0\\,s) \\,\\, \\textsf{and}\\,\\, s(6.0\\,s):\\\\\n\n\\begin{aligned}\ns(6) &= -16t^2 + 200t = -16(6)^2 + 200(6) \\\\&= 1200 - 576 = 624\n\\end{aligned}\\\\\n\n\n\\begin{aligned}\ns(0) &= -16(0)^2 + 200(0)\\\\\n&= 0\n\\end{aligned}\\\\\n\n\\begin{aligned}\nv_{average} &= \\frac{s(6) - s(0)}{6 - 0} \n\\\\&= \\frac{624 - 0}{6 - 0} = \\frac{624}{6}\n\\\\&= 104 \\,\\textsf{fts\/s}\n\\end{aligned}\\\\\n\n\\textbf{\\textsf{OR}}\\\\\n\\textsf{Since, velocity is the rate}\\\\\n\\textsf{of change of distance with time}\\\\\nv = \\frac{\\mathrm{d}(s(t))}{\\mathrm{d}t} = -32t + 200\\\\\n\n\\begin{aligned}\nv(6) &= -32(6) + 200\\\\\n&= -192 + 200 = 8\n\\end{aligned}\\\\\n\n\n\\begin{aligned}\nv(0) &= -32(0) + 200\\\\\n&= 200\n\\end{aligned}\\\\\n\n\\textsf{The sum of the initial and final}\\\\\n\\textsf{velocity is divided by}\\,2 \\, \\textsf{to find}\\\\\n\\textsf{the average.}\\\\\n\\textsf{The average velocity calculator}\\\\\n\\textsf{uses the formula that shows the}\\\\\n\\textsf{average velocity}\\, (v) \\, \\textsf{equals}\\\\\n\\textsf{the sum of the final velocity}\\, (v) \\, \\\\\n\\textsf{and the initial velocity}\\, (u), \\, \\textsf{divided by}\\, 2.\\\\\n\n\\begin{aligned}\nv_{average} &= \\frac{v_6 + v_0}{2} \n\\\\&= \\frac{200 + 8}{2} = \\frac{208}{2}\n\\\\&= 104 \\,\\textsf{fts\/s}\n\\end{aligned}\\\\\n\n\n(c)\\\\\n\\begin{aligned}\nv(2) &= -32(2) + 200\\\\\n&= -64 + 200 = 136\\,\\textsf{fts\/s}\n\\end{aligned}"
Comments
Leave a comment