"v=6~\\frac{m^3}{min},~h=24~m, r=12~m, l=10~m."
"V=\\frac 13 \\pi r^2h=\\frac 13 \\pi (\\frac rh)^2 h^3."
"V-vt=\\frac 13 \\pi (\\frac rh)^2 l^3,"
"\\frac 13 \\pi (\\frac rh)^2( h^3-l^3)=vt, \\implies"
"t=\\frac {\\pi}{3v} (\\frac rh)^2 (h^3-l^3),"
"l=\\sqrt[3]{h^3-\\frac{3vt}{\\pi} (\\frac hr)^2}."
"u(l)=(h-l(t))^{'}=-\\frac 13\\cdot (-\\frac{3v}{\\pi (\\frac rh)^2})\\cdot \\frac{1}{{(h^3-\\frac{3vt}{\\pi} (\\frac hr)^2})^{\\frac 23}}=\\frac{v}{\\pi (\\frac rh)^2}\\cdot \\frac{1}{{(h^3-\\frac{3v}{\\pi} (\\frac hr)^2} \\frac{\\pi}{3v}(\\frac rh)^2 (h^3-l^3)^{\\frac 23}}=\\frac{h^2 v}{\\pi r^2 l^2}."
"u(l)=\\frac{24^2\\cdot 6}{3.14\\cdot12^2\\cdot 10^2}=76.4 ~\\frac{mm}{s}."
Comments
Leave a comment