Question #147349
A water tank in the form of an inverted right-circular cone is being emptied at the rate of
6 m^3 /min. The altitude of the cone is 24m, and the base radius is 12m. Find how fast the water level is lowering when the water is 10m deep?
1
Expert's answer
2020-12-02T18:53:25-0500

v=6 m3min, h=24 m,r=12 m,l=10 m.v=6~\frac{m^3}{min},~h=24~m, r=12~m, l=10~m.


V=13πr2h=13π(rh)2h3.V=\frac 13 \pi r^2h=\frac 13 \pi (\frac rh)^2 h^3.


Vvt=13π(rh)2l3,V-vt=\frac 13 \pi (\frac rh)^2 l^3,

13π(rh)2(h3l3)=vt,    \frac 13 \pi (\frac rh)^2( h^3-l^3)=vt, \implies

t=π3v(rh)2(h3l3),t=\frac {\pi}{3v} (\frac rh)^2 (h^3-l^3),

l=h33vtπ(hr)23.l=\sqrt[3]{h^3-\frac{3vt}{\pi} (\frac hr)^2}.


u(l)=(hl(t))=13(3vπ(rh)2)1(h33vtπ(hr)2)23=vπ(rh)21(h33vπ(hr)2π3v(rh)2(h3l3)23=h2vπr2l2.u(l)=(h-l(t))^{'}=-\frac 13\cdot (-\frac{3v}{\pi (\frac rh)^2})\cdot \frac{1}{{(h^3-\frac{3vt}{\pi} (\frac hr)^2})^{\frac 23}}=\frac{v}{\pi (\frac rh)^2}\cdot \frac{1}{{(h^3-\frac{3v}{\pi} (\frac hr)^2} \frac{\pi}{3v}(\frac rh)^2 (h^3-l^3)^{\frac 23}}=\frac{h^2 v}{\pi r^2 l^2}.


u(l)=24263.14122102=76.4 mms.u(l)=\frac{24^2\cdot 6}{3.14\cdot12^2\cdot 10^2}=76.4 ~\frac{mm}{s}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS