Question #129368
Find dy/dx at (1,2) of the function xy²-y-4x²+2=0
1
Expert's answer
2020-08-16T20:05:23-0400
xy2y4x2+2=0xy^2-y-4x^2+2=0

Differentiate both sides with respect to xx


ddx(xy2y4x2+2)=ddx(0){d\over dx}(xy^2-y-4x^2+2)={d\over dx}(0)

Use the Chain rule


y2+x(2y)dydxdydx8x+0=0y^2+x(2y){dy\over dx}-{dy\over dx}-8x+0=0

Solve for dydx\dfrac{dy}{dx}

dydx=8xy22xy1\dfrac{dy}{dx}=\dfrac{8x-y^2}{2xy-1}

Substitute x=1,y=2x=1, y=2


dydx(1,2)=8(1)(2)22(1)(2)1=43\dfrac{dy}{dx}\big|_{(1,2)}=\dfrac{8(1)-(2)^2}{2(1)(2)-1}=\dfrac{4}{3}


dydx(1,2)=43\dfrac{dy}{dx}\big|_{(1,2)}=\dfrac{4}{3}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS