(i) ddxln(1+sin2x)=11+sin2x⋅ddx(1+sin2x)=11+sin2x⋅(0+2sinx⋅cosx)=sin2x1+sin2x.\dfrac{d}{dx} \ln(1+\sin^2x) = \dfrac{1}{1+\sin^2x}\cdot\dfrac{d}{dx}(1+\sin^2x) = \dfrac{1}{1+\sin^2x}\cdot (0+2\sin x\cdot\cos x) = \dfrac{\sin2x}{1+\sin^2x}.dxdln(1+sin2x)=1+sin2x1⋅dxd(1+sin2x)=1+sin2x1⋅(0+2sinx⋅cosx)=1+sin2xsin2x.
(ii)
ddxxx=ddxexlnx=exlnx⋅ddx(xlnx)=exlnx⋅(lnx+xx)=exlnx⋅(1+lnx)==xx⋅(1+lnx).\dfrac{d}{dx} x^x = \dfrac{d}{dx} e^{x\ln x} = e^{x\ln x}\cdot \dfrac{d}{dx} (x\ln x) = e^{x\ln x}\cdot (\ln x + \dfrac{x}{x}) = e^{x\ln x}\cdot (1+\ln x) = \\ = x^x\cdot(1+\ln x).dxdxx=dxdexlnx=exlnx⋅dxd(xlnx)=exlnx⋅(lnx+xx)=exlnx⋅(1+lnx)==xx⋅(1+lnx).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments