Question #124156
Differentiate the following functions with respect to x:
(i) ln(1 + sin^(2) x)
(ii) x^x
.
1
Expert's answer
2020-06-29T18:21:03-0400

(i) ddxln(1+sin2x)=11+sin2xddx(1+sin2x)=11+sin2x(0+2sinxcosx)=sin2x1+sin2x.\dfrac{d}{dx} \ln(1+\sin^2x) = \dfrac{1}{1+\sin^2x}\cdot\dfrac{d}{dx}(1+\sin^2x) = \dfrac{1}{1+\sin^2x}\cdot (0+2\sin x\cdot\cos x) = \dfrac{\sin2x}{1+\sin^2x}.


(ii)

ddxxx=ddxexlnx=exlnxddx(xlnx)=exlnx(lnx+xx)=exlnx(1+lnx)==xx(1+lnx).\dfrac{d}{dx} x^x = \dfrac{d}{dx} e^{x\ln x} = e^{x\ln x}\cdot \dfrac{d}{dx} (x\ln x) = e^{x\ln x}\cdot (\ln x + \dfrac{x}{x}) = e^{x\ln x}\cdot (1+\ln x) = \\ = x^x\cdot(1+\ln x).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS