Question #124136
Evaluate the following integrals:
(i) ∫ x ln(x + 1)dx

(ii) ∫ ((sin³ (In x) cos²(In x)) / (x)) dx
1
Expert's answer
2020-07-01T15:30:54-0400

i. Let I=xln[1+x]dxI=\int xln[1+x]dx

Using integration by parts : I=ln[1+x]xdx[(d[ln[1+x]/dx)xdx]dxI=ln[1+x]\int xdx - \int[(d[ln[1+x]/dx) * \int xdx]dx

I=ln[1+x](x2/2)[(1/(1+x)1(x2/2)]dxI=ln[1+x]*(x^2/2) -\int[(1/(1+x)*1*(x^2/2)]dx

or, I=(x2/2)ln[1+x](1/2)I=(x^2/2)*ln[1+x] - (1/2)*\int [x2/(1+x)]dx[x^2/(1+x)]dx

Let us calculate [x2/(1+x)]dx\int [x^2/(1+x)]dx

=(x21+1)/(1+x)dx=\int(x^2-1+1)/(1+x)dx

=[(x1)(x+1)/(x+1)+(1/(1+x))]dx=\int[(x-1)(x+1)/(x+1)+(1/(1+x))]dx

=[(x1)+(1/(1+x))]dx=\int[(x-1) +(1/(1+x))]dx

=(x1)dx+1/=\int(x-1)dx+\int1/ (1+x)dx(1+x)dx

Let1+xLet 1+x =zz

therefore, dx=dzdx=dz

therefore , I=(x1)dx+(1/z)dzI=\int(x-1)dx+\int(1/z)dz

=(x2/2)x+lnz=(x^2/2)-x+lnz

Putting z=1+xz=1+x

I=(x2/2)x+ln[1+x]I=(x^2/2)-x+ln[1+x]

Putting this back to II we get:

I=(x2/2)ln[1+x](1/2)[x2/2x+ln[1+x]]+CI=(x^2/2)ln[1+x] -(1/2)*[x^2/2-x+ln[1+x]]+C

=(x2/2)ln[1+x](x2/4)+(x/2)(1/2)ln[1+x]+C=(x^2/2)ln[1+x]-(x^2/4)+(x/2)-(1/2)*ln[1+x]+C

where C is an integration constant (Answers)




ii. Let I=[sin3(lnx)cos2(lnx)]/xdxI=\int[sin^3(lnx)cos^2(lnx)]/xdx

Let lnx=zlnx=z

therefore, (1/x)dx=dz(1/x)dx=dz

therefore, I=[sin3zcos2z]dzI=\int[sin^3zcos^2z]dz

=[sin2zcos2sinz]dz=\int[sin^2zcos^2sinz]dz

Let cosz=ucosz=u

sinzdz=du-sinzdz=du

therefore, I=(1u2)u2duI=\int-(1-u^2)*u^2du

=(u2+u4)du=\int(-u^2+u^4)du

=u3/3+u5/5+c=-u^3/3+u^5/5 +c where C is an integration constant

Putting back u=coszu=cosz we get

I=cos3z/3+cos5z/5+CI=-cos^3z/3+cos^5z/5 + C

Again putting back z=lnxz=lnx we get:

I=cos3(lnx)/3+cos5(lnx)/5+C(Answer)I=-cos^3(lnx)/3 + cos^5(lnx)/5 +C (Answer)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS