i. Let I=∫xln[1+x]dx
Using integration by parts : I=ln[1+x]∫xdx−∫[(d[ln[1+x]/dx)∗∫xdx]dx
I=ln[1+x]∗(x2/2)−∫[(1/(1+x)∗1∗(x2/2)]dx
or, I=(x2/2)∗ln[1+x]−(1/2)∗∫ [x2/(1+x)]dx
Let us calculate ∫[x2/(1+x)]dx
=∫(x2−1+1)/(1+x)dx
=∫[(x−1)(x+1)/(x+1)+(1/(1+x))]dx
=∫[(x−1)+(1/(1+x))]dx
=∫(x−1)dx+∫1/ (1+x)dx
Let1+x =z
therefore, dx=dz
therefore , I=∫(x−1)dx+∫(1/z)dz
=(x2/2)−x+lnz
Putting z=1+x
I=(x2/2)−x+ln[1+x]
Putting this back to I we get:
I=(x2/2)ln[1+x]−(1/2)∗[x2/2−x+ln[1+x]]+C
=(x2/2)ln[1+x]−(x2/4)+(x/2)−(1/2)∗ln[1+x]+C
where C is an integration constant (Answers)
ii. Let I=∫[sin3(lnx)cos2(lnx)]/xdx
Let lnx=z
therefore, (1/x)dx=dz
therefore, I=∫[sin3zcos2z]dz
=∫[sin2zcos2sinz]dz
Let cosz=u
−sinzdz=du
therefore, I=∫−(1−u2)∗u2du
=∫(−u2+u4)du
=−u3/3+u5/5+c where C is an integration constant
Putting back u=cosz we get
I=−cos3z/3+cos5z/5+C
Again putting back z=lnx we get:
I=−cos3(lnx)/3+cos5(lnx)/5+C(Answer)
Comments