i. Let "I=\\int xln[1+x]dx"
Using integration by parts : "I=ln[1+x]\\int xdx - \\int[(d[ln[1+x]\/dx) * \\int xdx]dx"
"I=ln[1+x]*(x^2\/2) -\\int[(1\/(1+x)*1*(x^2\/2)]dx"
or, "I=(x^2\/2)*ln[1+x] - (1\/2)*\\int" "[x^2\/(1+x)]dx"
Let us calculate "\\int [x^2\/(1+x)]dx"
"=\\int(x^2-1+1)\/(1+x)dx"
"=\\int[(x-1)(x+1)\/(x+1)+(1\/(1+x))]dx"
"=\\int[(x-1) +(1\/(1+x))]dx"
"=\\int(x-1)dx+\\int1\/" "(1+x)dx"
"Let 1+x" ="z"
therefore, "dx=dz"
therefore , "I=\\int(x-1)dx+\\int(1\/z)dz"
"=(x^2\/2)-x+lnz"
Putting "z=1+x"
"I=(x^2\/2)-x+ln[1+x]"
Putting this back to "I" we get:
"I=(x^2\/2)ln[1+x] -(1\/2)*[x^2\/2-x+ln[1+x]]+C"
"=(x^2\/2)ln[1+x]-(x^2\/4)+(x\/2)-(1\/2)*ln[1+x]+C"
where C is an integration constant (Answers)
ii. Let "I=\\int[sin^3(lnx)cos^2(lnx)]\/xdx"
Let "lnx=z"
therefore, "(1\/x)dx=dz"
therefore, "I=\\int[sin^3zcos^2z]dz"
"=\\int[sin^2zcos^2sinz]dz"
Let "cosz=u"
"-sinzdz=du"
therefore, "I=\\int-(1-u^2)*u^2du"
"=\\int(-u^2+u^4)du"
"=-u^3\/3+u^5\/5 +c" where C is an integration constant
Putting back "u=cosz" we get
"I=-cos^3z\/3+cos^5z\/5 + C"
Again putting back "z=lnx" we get:
"I=-cos^3(lnx)\/3 + cos^5(lnx)\/5 +C (Answer)"
Comments
Leave a comment