I=∫x4−x3+4x2−4x2x3−4x−8dx.
This is a fractional-rational function x4−x3+4x2−4x2x3−4x−8. Factorize the denominator:
x4−x3+4x2−4x=x3(x−1)+4x(x−1)=
=(x−1)(x3+4x)=x(x−1)(x2+4).
So, we have x4−x3+4x2−4x2x3−4x−8=x(x−1)(x2+4)2x3−4x−8.
Let's build a decomposition:
x(x−1)(x2+4)2x3−4x−8=xA+x−1B+x2+4Cx+D.
Let's bring the right part to the common denominator:
x(x−1)(x2+4)A(x−1)(x2+4)+Bx(x2+4)+(Cx+D)(x−1)x.
Open the brackets in the numerator:
A(x3+4x−x2−4)+Bx3+4Bx+Cx3−
−Cx2+Dx2−Dx.
Simplify the expression:
x3(A+B+C)+x2(−A−C+D)+
+x(4A+4B−D)+x0(−4A) .
So, we have:
2x3−4x−8=x3(A+B+C)+
+x2(−A−C+D)+x(4A+4B−D)+
+x0(−4A).
Let's collect summands with the same degrees:
A+B+C=2 ,
D−A−C=0 ,
4A+4B−D=−4 ,
−4A=−8.
From the last equation we find A=2.
Now, we have:
B+C=0,
D−C=2,
4B−D=−12.
Further:
B=−С,
D=2+C,
4B−2+B=−12 .
So, from the last equation we find B=−2. And therefore C=2,D=4.
Eventually:
I=∫x4−x3+4x2−4x2x3−4x−8dx=
=∫xA+x−1B+x2+4Cx+D=∫x2dx+∫x−1−2dx+
+∫x2+42x+4dx.
Let's count each integral separately:
∫x2dx=2ln(x)+C1.
∫x−1−2dx=−2ln(x−1)+C2.
∫x2+42x+4dx=∫x2+42xdx+4∫x2+41dx=∫x2+4d(x2+4)+
+2arctan(2x)+C4=ln(x2+4)+C3+
2arctan(2x)+C4.
Answer:
I=2ln(x)−2ln(x−1)+ln(x2+4)+
+2arctan(2x)+C.
Comments