Question #124130
Evaluate the integeral
∫((2x³ -4x -8)/ (x⁴ -x³ +4x² -4x)) dx
1
Expert's answer
2020-07-05T17:19:46-0400

I=2x34x8x4x3+4x24xdx.I = \int\frac{2x^3-4x-8}{x^4-x^3+4x^2-4x}dx.


This is a fractional-rational function 2x34x8x4x3+4x24x\frac{2x^3-4x-8}{x^4-x^3+4x^2-4x}. Factorize the denominator:


x4x3+4x24x=x3(x1)+4x(x1)=x^4-x^3+4x^2-4x = x^3(x-1)+4x(x-1)=

=(x1)(x3+4x)=x(x1)(x2+4).=(x-1)(x^3+4x)=x(x-1)(x^2+4).


So, we have 2x34x8x4x3+4x24x=2x34x8x(x1)(x2+4)\frac{2x^3-4x-8}{x^4-x^3+4x^2-4x}=\frac{2x^3-4x-8}{x(x-1)(x^2+4)}.


Let's build a decomposition:


2x34x8x(x1)(x2+4)=Ax+Bx1+Cx+Dx2+4\frac{2x^3-4x-8}{x(x-1)(x^2+4)}=\frac{A}{x}+\frac{B}{x-1}+\frac{Cx+D}{x^2+4}.

Let's bring the right part to the common denominator:


\frac{}{}A(x1)(x2+4)+Bx(x2+4)+(Cx+D)(x1)xx(x1)(x2+4)\frac{A(x-1)(x^2+4)+Bx(x^2+4)+(Cx+D)(x-1)x}{x(x-1)(x^2+4)}.


Open the brackets in the numerator:

A(x3+4xx24)+Bx3+4Bx+Cx3A(x^3+4x-x^2-4)+Bx^3+4Bx+Cx^3-

Cx2+Dx2Dx-Cx^2+Dx^2-Dx.


Simplify the expression:

x3(A+B+C)+x2(AC+D)+x^3(A+B+C)+x^2(-A-C+D)+

+x(4A+4BD)+x0(4A)+x(4A+4B-D)+x^0(-4A) .


So, we have:

2x34x8=x3(A+B+C)+2x^3-4x-8=x^3(A+B+C)+

+x2(AC+D)+x(4A+4BD)++x^2(-A-C+D)+x(4A+4B-D)+

+x0(4A)+x^0(-4A).


Let's collect summands with the same degrees:

A+B+C=2A+B+C=2 ,

DAC=0D-A-C=0 ,

4A+4BD=44A+4B-D=-4 ,

4A=8-4A=-8.


From the last equation we find A=2A = 2.

Now, we have:

B+C=0B+C=0,

DC=2D-C=2,

4BD=124B-D=-12.


Further:

B=СB=-С,

D=2+CD=2+C,

4B2+B=124B-2+B=-12 .


So, from the last equation we find B=2B=-2. And therefore C=2,D=4C=2, D=4.

Eventually:


I=2x34x8x4x3+4x24xdx=I = \int\frac{2x^3-4x-8}{x^4-x^3+4x^2-4x}dx =


=Ax+Bx1+Cx+Dx2+4=2xdx+2x1dx+=\int\frac{A}{x}+\frac{B}{x-1}+\frac{Cx+D}{x^2+4}=\int\frac{2}{x}dx+\int\frac{-2}{x-1}dx+


+2x+4x2+4dx+\int\frac{2x+4}{x^2+4}dx.


Let's count each integral separately:


2xdx=2ln(x)+C1\int\frac{2}{x}dx = 2ln(x) +C_1.


2x1dx=2ln(x1)+C2\int\frac{-2}{x-1}dx = -2ln(x-1)+C_2.


2x+4x2+4dx=2xx2+4dx+41x2+4dx=d(x2+4)x2+4+\int\frac{2x+4}{x^2+4}dx=\int\frac{2x}{x^2+4}dx+4\int\frac{1}{x^2+4}dx=\int\frac{d(x^2+4)}{x^2+4}+


+2arctan(x2)+C4=ln(x2+4)+C3++2arctan(\frac{x}{2}) +C_4=ln(x^2+4)+C_3+


2arctan(x2)+C42arctan(\frac{x}{2})+C_4.


Answer:

I=2ln(x)2ln(x1)+ln(x2+4)+I=2ln(x)-2ln(x-1)+ln(x^2+4)+

+2arctan(x2)+C+2arctan(\frac{x}{2})+C.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS