"I = \\int\\frac{2x^3-4x-8}{x^4-x^3+4x^2-4x}dx."
This is a fractional-rational function "\\frac{2x^3-4x-8}{x^4-x^3+4x^2-4x}". Factorize the denominator:
"x^4-x^3+4x^2-4x = x^3(x-1)+4x(x-1)="
"=(x-1)(x^3+4x)=x(x-1)(x^2+4)."
So, we have "\\frac{2x^3-4x-8}{x^4-x^3+4x^2-4x}=\\frac{2x^3-4x-8}{x(x-1)(x^2+4)}".
Let's build a decomposition:
"\\frac{2x^3-4x-8}{x(x-1)(x^2+4)}=\\frac{A}{x}+\\frac{B}{x-1}+\\frac{Cx+D}{x^2+4}".
Let's bring the right part to the common denominator:
"\\frac{}{}""\\frac{A(x-1)(x^2+4)+Bx(x^2+4)+(Cx+D)(x-1)x}{x(x-1)(x^2+4)}".
Open the brackets in the numerator:
"A(x^3+4x-x^2-4)+Bx^3+4Bx+Cx^3-"
"-Cx^2+Dx^2-Dx".
Simplify the expression:
"x^3(A+B+C)+x^2(-A-C+D)+"
"+x(4A+4B-D)+x^0(-4A)" .
So, we have:
"2x^3-4x-8=x^3(A+B+C)+"
"+x^2(-A-C+D)+x(4A+4B-D)+"
"+x^0(-4A)".
Let's collect summands with the same degrees:
"A+B+C=2" ,
"D-A-C=0" ,
"4A+4B-D=-4" ,
"-4A=-8".
From the last equation we find "A = 2".
Now, we have:
"B+C=0",
"D-C=2",
"4B-D=-12".
Further:
"B=-\u0421",
"D=2+C",
"4B-2+B=-12" .
So, from the last equation we find "B=-2". And therefore "C=2, D=4".
Eventually:
"I = \\int\\frac{2x^3-4x-8}{x^4-x^3+4x^2-4x}dx ="
"=\\int\\frac{A}{x}+\\frac{B}{x-1}+\\frac{Cx+D}{x^2+4}=\\int\\frac{2}{x}dx+\\int\\frac{-2}{x-1}dx+"
"+\\int\\frac{2x+4}{x^2+4}dx".
Let's count each integral separately:
"\\int\\frac{2}{x}dx = 2ln(x) +C_1".
"\\int\\frac{-2}{x-1}dx = -2ln(x-1)+C_2".
"\\int\\frac{2x+4}{x^2+4}dx=\\int\\frac{2x}{x^2+4}dx+4\\int\\frac{1}{x^2+4}dx=\\int\\frac{d(x^2+4)}{x^2+4}+"
"+2arctan(\\frac{x}{2}) +C_4=ln(x^2+4)+C_3+"
"2arctan(\\frac{x}{2})+C_4".
Answer:
"I=2ln(x)-2ln(x-1)+ln(x^2+4)+"
"+2arctan(\\frac{x}{2})+C".
Comments
Leave a comment