Given, f(x)=(6−5x)4e−3x2x−5. Applying logarithm on both sides,
lnf(x)=ln{(6−5x)4e−3x2x−5} =ln(e−3x2x−5)−ln(6−5x)4 (using ln(ba)=lna−lnb) lnf(x)=−3x+21ln(2x−5)−4ln(6−5x) (using ln(ab)=lna+lnb,lnex=x and lnab=blna)
Differentiating with respect to x,
f(x)f′(x)=−3+21⋅2x−51⋅2−4⋅6−5x1⋅(−5) f′(x)=f(x){−3+2x−51+6−5x20} =f(x){(2x−5)(6−5x)−3(2x−5)(6−5x)+6−5x+20(2x−5)} f′(x)=(6−5x)4e−3x2x−5{(2x−5)(6−5x)30x2−76x−4} f′(x)=2e−3x{2x−5(6−5x)515x2−38x−2}
Comments