Question #124127
Find f′(x) using logarithmic differentiation , where f(x) =( e⁻³ˣ √(2x-5)) / (6 -5x)⁴
1
Expert's answer
2020-07-01T19:02:48-0400

Given, f(x)=e3x2x5(65x)4f(x)=\dfrac{e^{-3x}\sqrt{2x-5}}{(6-5x)^{4}}. Applying logarithm on both sides,

lnf(x)=ln{e3x2x5(65x)4}              =ln(e3x2x5)ln(65x)4   (using ln(ab)=lnalnb) lnf(x)=3x+12ln(2x5)4ln(65x)                                   (using ln(ab)=lna+lnb,lnex=x and lnab=blna \ln f(x)=\ln\bigg\{\dfrac{e^{-3x}\sqrt{2x-5}}{(6-5x)^{4}}\bigg\}\\~ \\~~~~~~~~~~~~~=\ln (e^{-3x}\sqrt{2x-5}) - \ln (6-5x)^{4}~~~(\text{using}~\ln (\frac{a}{b})=\ln a- \ln b)\\~\\\ln f(x)=-3x+\dfrac{1}{2}\ln(2x-5)-4\ln(6-5x)\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(\text{using $\ln (ab)=\ln a + \ln b, \ln e^{x} = x$ and $\ln a^{b} = b \ln a$) }\\~\\

Differentiating with respect to x,


f(x)f(x)=3+1212x524165x(5) f(x)=f(x){3+12x5+2065x}           =f(x){3(2x5)(65x)+65x+20(2x5)(2x5)(65x)} f(x)=e3x2x5(65x)4{30x276x4(2x5)(65x)} f(x)=2e3x{15x238x22x5(65x)5}\dfrac{f'(x)}{f(x)} = -3 + \dfrac{1}{2}\cdot \dfrac{1}{2x-5}\cdot 2 - 4 \cdot \dfrac{1}{6-5x}\cdot (-5)\\~\\ f'(x) = f(x)\bigg\{ -3 + \dfrac{1}{2x-5} + \dfrac{20}{6-5x}\bigg\}\\~\\ ~~~~~~~~~~=f(x)\bigg\{ \dfrac{-3(2x-5)(6-5x)+6-5x+20(2x-5)}{(2x-5)(6-5x)}\bigg\}\\~\\ f'(x)=\dfrac{e^{-3x}\sqrt{2x-5}}{(6-5x)^{4}}\bigg\{ \dfrac{30x^{2}-76x-4}{(2x-5)(6-5x)}\bigg\}\\~\\ f'(x)=2e^{-3x}\bigg\{ \dfrac{15x^{2}-38x-2}{\sqrt{2x-5}(6-5x)^{5}}\bigg\}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS