Given, "f(x)=\\dfrac{e^{-3x}\\sqrt{2x-5}}{(6-5x)^{4}}". Applying logarithm on both sides,
"\\ln f(x)=\\ln\\bigg\\{\\dfrac{e^{-3x}\\sqrt{2x-5}}{(6-5x)^{4}}\\bigg\\}\\\\~\n\\\\~~~~~~~~~~~~~=\\ln (e^{-3x}\\sqrt{2x-5}) - \\ln (6-5x)^{4}~~~(\\text{using}~\\ln (\\frac{a}{b})=\\ln a- \\ln b)\\\\~\\\\\\ln f(x)=-3x+\\dfrac{1}{2}\\ln(2x-5)-4\\ln(6-5x)\\\\\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(\\text{using $\\ln (ab)=\\ln a + \\ln b, \\ln e^{x} = x$ and $\\ln a^{b} = b \\ln a$) }\\\\~\\\\"
Differentiating with respect to x,
"\\dfrac{f'(x)}{f(x)} = -3 + \\dfrac{1}{2}\\cdot \\dfrac{1}{2x-5}\\cdot 2 - 4 \\cdot \\dfrac{1}{6-5x}\\cdot (-5)\\\\~\\\\\nf'(x) = f(x)\\bigg\\{ -3 + \\dfrac{1}{2x-5} + \\dfrac{20}{6-5x}\\bigg\\}\\\\~\\\\\n~~~~~~~~~~=f(x)\\bigg\\{ \\dfrac{-3(2x-5)(6-5x)+6-5x+20(2x-5)}{(2x-5)(6-5x)}\\bigg\\}\\\\~\\\\\nf'(x)=\\dfrac{e^{-3x}\\sqrt{2x-5}}{(6-5x)^{4}}\\bigg\\{ \\dfrac{30x^{2}-76x-4}{(2x-5)(6-5x)}\\bigg\\}\\\\~\\\\\nf'(x)=2e^{-3x}\\bigg\\{ \\dfrac{15x^{2}-38x-2}{\\sqrt{2x-5}(6-5x)^{5}}\\bigg\\}"
Comments
Leave a comment