(i)
Let y = ln(1+sin2x)
Also let z = 1+sin2x
So y = ln(z)
Differentiating with respect to z
"\\frac{dy}{dz}" = "\\frac{1}{z}"
Again z = 1+sin2x
So "\\frac{dz}{dx}" = 2cos2x as "\\frac{d(1)}{dx} = 0" and ", \\frac{d}{dx}[sin(mx)] = mcos(mx)"
Now "\\frac{dy}{dx} = \\frac{dy}{dz} \\frac{dz}{dx}" = "\\frac{1}{z}" (2cos 2x)
=> "\\frac{dy}{dx} = \\frac{2cos2x}{1+sin2x}"
You can further simplify as follows
"\\frac{dy}{dx} = \\frac{2cos2x(1-sin2x)}{1-sin^22x}"
=> "\\frac{dy}{dx} = \\frac{2cos2x(1-sin2x)}{cos^22x}"
=> "\\frac{dy}{dx} = \\frac{2(1-sin2x)}{cos2x}"
=> "\\frac{dy}{dx} = 2(sec2x-tan2x)"
Therefore
"\\frac{d}{dx}(ln(1+sin2x)"
= "2(sec2x-tan2x)"
(ii)
Let y = x²
We know that "\\frac{d}{dx}(x^n) = nx^{n-1}"
So "\\frac{dy}{dx} = 2x^{2-1}"
=> "\\frac{dy}{dx} = 2x"
So "\\frac{d}{dx}(x^2) = 2x"
Comments
Leave a comment