Question #124122
Differentiate the following functions with respect to x:
(i) ln(1 + sin2 x) (ii) x²
1
Expert's answer
2020-06-29T18:51:01-0400

(i)

Let y = ln(1+sin2x)

Also let z = 1+sin2x

So y = ln(z)

Differentiating with respect to z

dydz\frac{dy}{dz} = 1z\frac{1}{z}

Again z = 1+sin2x

So dzdx\frac{dz}{dx} = 2cos2x as d(1)dx=0\frac{d(1)}{dx} = 0 and ,ddx[sin(mx)]=mcos(mx), \frac{d}{dx}[sin(mx)] = mcos(mx)

Now dydx=dydzdzdx\frac{dy}{dx} = \frac{dy}{dz} \frac{dz}{dx} = 1z\frac{1}{z} (2cos 2x)

=> dydx=2cos2x1+sin2x\frac{dy}{dx} = \frac{2cos2x}{1+sin2x}

You can further simplify as follows

dydx=2cos2x(1sin2x)1sin22x\frac{dy}{dx} = \frac{2cos2x(1-sin2x)}{1-sin^22x}

=> dydx=2cos2x(1sin2x)cos22x\frac{dy}{dx} = \frac{2cos2x(1-sin2x)}{cos^22x}

=> dydx=2(1sin2x)cos2x\frac{dy}{dx} = \frac{2(1-sin2x)}{cos2x}

=> dydx=2(sec2xtan2x)\frac{dy}{dx} = 2(sec2x-tan2x)

Therefore

ddx(ln(1+sin2x)\frac{d}{dx}(ln(1+sin2x)

= 2(sec2xtan2x)2(sec2x-tan2x)

(ii)

Let y = x²

We know that ddx(xn)=nxn1\frac{d}{dx}(x^n) = nx^{n-1}

So dydx=2x21\frac{dy}{dx} = 2x^{2-1}

=> dydx=2x\frac{dy}{dx} = 2x

So ddx(x2)=2x\frac{d}{dx}(x^2) = 2x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS