(i)
Let y = ln(1+sin2x)
Also let z = 1+sin2x
So y = ln(z)
Differentiating with respect to z
dzdy = z1
Again z = 1+sin2x
So dxdz = 2cos2x as dxd(1)=0 and ,dxd[sin(mx)]=mcos(mx)
Now dxdy=dzdydxdz = z1 (2cos 2x)
=> dxdy=1+sin2x2cos2x
You can further simplify as follows
dxdy=1−sin22x2cos2x(1−sin2x)
=> dxdy=cos22x2cos2x(1−sin2x)
=> dxdy=cos2x2(1−sin2x)
=> dxdy=2(sec2x−tan2x)
Therefore
dxd(ln(1+sin2x)
= 2(sec2x−tan2x)
(ii)
Let y = x²
We know that dxd(xn)=nxn−1
So dxdy=2x2−1
=> dxdy=2x
So dxd(x2)=2x
Comments