Question #124115
Verify that the given family of functions solves the differential equation.
(i) dy⁄dx= (1-2t)y², y=⅟(C – t + t²)
(ii) dy⁄dx= y² sin t, y=⅟(C + cos t)
1
Expert's answer
2020-07-02T19:09:21-0400

(i)dydt=(12t)y2We separate y and t to getdyy2=(12t)dtIntegratedyy2=(12t)dt1y=(tt2+c)y=1tt2+c=1Ct+t2(ii)dydt=y2sintWe separate y and t to getdyy2=sint dtIntegratedyy2=sint dt1y= cos t+cy=1 cos t+c=1 cos t+ C(i) \frac{dy}{dt}=(1-2t)y^2\\[1 em] \text{We separate y and t to get}\\[1 em] \frac{dy}{y^2}=(1-2t)dt\\[1 em] \text{Integrate}\\[1 em] \int \frac{dy}{y^2}=\int(1-2t)dt\\[1 em] \therefore \frac{-1}{y}=(t-t^2+c)\\[1 em] \therefore y= \frac{-1}{t-t^2+c}=\frac{1}{C-t+t^2}\\[1 em] (ii) \frac{dy}{dt}=y^2 \sin t\\[1 em] \text{We separate y and t to get}\\[1 em] \frac{dy}{y^2}=\sin t ~dt \\[1 em] \text{Integrate}\\[1 em] \int \frac{dy}{y^2}=\sin t ~dt \\[1 em] \therefore \frac{-1}{y}=-\ cos~ t +c\\[1 em] \therefore y= \frac{-1}{-\ cos ~t +c}=\frac{1}{\ cos ~t +~C}\\[1 em]

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS