Verify that the given family of functions solves the differential equation.
(i) dy⁄dx= (1-2t)y², y=⅟(C – t + t²)
(ii) dy⁄dx= y² sin t, y=⅟(C + cos t)
1
Expert's answer
2020-07-02T19:09:21-0400
"(i) \n\\frac{dy}{dt}=(1-2t)y^2\\\\[1 em]\n\\text{We separate y and t to get}\\\\[1 em]\n\\frac{dy}{y^2}=(1-2t)dt\\\\[1 em]\n\\text{Integrate}\\\\[1 em]\n \n\\int \\frac{dy}{y^2}=\\int(1-2t)dt\\\\[1 em]\n\\therefore \\frac{-1}{y}=(t-t^2+c)\\\\[1 em]\n\\therefore y= \\frac{-1}{t-t^2+c}=\\frac{1}{C-t+t^2}\\\\[1 em]\n\n(ii) \n \\frac{dy}{dt}=y^2 \\sin t\\\\[1 em]\n\\text{We separate y and t to get}\\\\[1 em]\n\\frac{dy}{y^2}=\\sin t ~dt \\\\[1 em]\n\\text{Integrate}\\\\[1 em]\n\n\\int \\frac{dy}{y^2}=\\sin t ~dt \\\\[1 em]\n\\therefore \\frac{-1}{y}=-\\ cos~ t +c\\\\[1 em]\n\\therefore y= \\frac{-1}{-\\ cos ~t +c}=\\frac{1}{\\ cos ~t +~C}\\\\[1 em]"
Comments
Leave a comment