(i) dtdy=t1+t2,y(t=1)=0.
We can separate variables and integrate this equation:
dy=t1+t2dt,
dy=(t1+t)dt,
∫dy=∫(t1+t)dt,
y(t)=ln∣t∣+2t2+C, C is a constant.
Next, we plug in our initial condition: y(t=1)=0=ln∣1∣+212+C=0.5+C.
We get that C=−0.5.
Thus, plugging back into our solution for y, we get:
y(t)=ln∣t∣+2t2−0.5.
It's domain is t=0 or t∈(−∞;0)∪(0;+∞) .
(ii) (t+1)dtdy=1−y,y(t=0)=3.
We can separate and integrate:
1−ydy=t+1dt,
−1−yd(1−y)=dtd(1+t),
−ln∣1−y∣=ln∣1+t∣+C, C is a constant.
ln∣(1−y)(1+t)∣=−C,
(1−y)(1+t)=e−C.
Set A=e−C, hence we have:
(1−y)(1+t)=A, where A is a constant.
1−y=1+tA,
y=1−1+tA=1+t1+t−A=t+1t+C1, where C1=1−A is a constant.
Next, we plug in our initial condition:
y(t=0)=3=0+10+C1=C1, and we get that C1=3.
Thus, plugging back into our solution for y, we get:
y(t)=t+1t+3, it's domain is t=−1 or t∈(−∞;−1)∪(−1;+∞).
Comments
Leave a comment