Answer to Question #124100 in Calculus for Koby

Question #124100
Find the solution of the initial-value problem and determine its interval of existence (i.e domain of the resulting function y).

(i)dy/dt=(1+t²)/t , y(t = 1) = 0

(ii) (t + 1) dy/dt = 1- y , y(t = 0) = 3 [Hint: Let A = -(±e^(-c))]
1
Expert's answer
2020-06-29T19:16:39-0400

(i) dydt=1+t2t,y(t=1)=0.\frac{dy}{dt}=\frac{1+t^2}{t} , y(t = 1) = 0.

We can separate variables and integrate this equation:

dy=1+t2tdt,dy=\frac{1+t^2}{t}dt,

dy=(1t+t)dt,dy=(\frac{1}{t}+t)dt,

dy=(1t+t)dt,\int dy = \int (\frac{1}{t}+t)dt,

y(t)=lnt+t22+C,y(t)=ln|t|+\frac{t^2}{2}+C, CC is a constant.

Next, we plug in our initial condition: y(t=1)=0=ln1+122+C=0.5+C.y(t=1)=0=ln|1|+\frac{1^2}{2}+C=0.5+C.

We get that C=0.5.C=-0.5.

Thus, plugging back into our solution for y, we get:

y(t)=lnt+t220.5.y(t)=ln|t|+\frac{t^2}{2}-0.5.

It's domain is t0t\neq 0 or t(;0)(0;+)t \in (-\infty;0)\cup(0;+\infty) .


(ii) (t+1)dydt=1y,y(t=0)=3.(t+1)\frac{dy}{dt} = 1- y , y(t = 0) = 3.

We can separate and integrate:

dy1y=dtt+1,\frac{dy}{1-y}=\frac{dt}{t+1},

d(1y)1y=d(1+t)dt,-\frac{d(1-y)}{1-y}=\frac{d(1+t)}{dt},

ln1y=ln1+t+C,−ln∣1−y∣=ln∣1+t∣+C, CC is a constant.

ln(1y)(1+t)=C,ln|(1-y)(1+t)|=-C,

(1y)(1+t)=eC.(1-y)(1+t)=e^{-C}.

Set A=eC,A=e^{-C}, hence we have:

(1y)(1+t)=A,(1−y)(1+t)=A, where A is a constant.

1y=A1+t,1-y=\frac{A}{1+t},

y=1A1+t=1+tA1+t=t+C1t+1,y=1-\frac{A}{1+t}=\frac{1+t-A}{1+t}=\frac{t+C_1}{t+1}, where C1=1AC_1=1-A is a constant.

Next, we plug in our initial condition:

y(t=0)=3=0+C10+1=C1,y(t=0)=3=\frac{0+C_1}{0+1}=C_1, and we get that C1=3.C_1=3.

Thus, plugging back into our solution for y, we get:

y(t)=t+3t+1,y(t)=\frac{t+3}{t+1}, it's domain is t1t \neq -1 or t(;1)(1;+).t \in (-\infty; -1)\cup (-1; +\infty).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment