Question #124067
Differentiate the following functions with respect to x: (i) ln(1 + sin2 x) (ii) xx.
(c) Evaluate the integral 2x3 −4x−8 /x4 −x3 +4x2 −4x dx.
1
Expert's answer
2020-06-29T17:41:08-0400

1.i. ln[1+sin2x]ln [ 1 + sin 2x]

Differentiating with respect to xx :

d(ln[1+sin2x])/dxd( ln [ 1 + sin2x])/dx

=[2cos(2x)]/[1+sin2x]=[2 cos(2x)] / [ 1 + sin 2x] (Answer)

ii. xxx^x

Let A = xxx^x

Taking natural logarithm on both sides:

lnA=xlnxln A= x ln x

Differentiating with respect to x:

d[lnA]/dx=d[xlnx]/dxd[ ln A]/dx = d[x ln x] / dx

or, 1/Ad[A]/dx=x/x+lnx1 / A * d[A]/dx = x/x + ln x

or, dA/dx=(1+lnx)AdA/dx = (1 + ln x) * A

Putting A = xxx^x

dA/dx=[1+lnx]XxAnswerdA/dx = [1 + ln x] * X^x Answer


c. Solve (2x34x8/x4x3+4x24x)dx\int ( 2x^3 - 4x - 8/x^4 - x^3 + 4x^2 -4x) dx

= 2x4/44x2/28x3/(3)x4/4+4x3/34x2/2+c2x^4/4 - 4x^2/2 - 8x^{-3} /( -3) - x^4/4 + 4x^3/3 - 4x^2/2 + c

where C is an integration constant

= x4/22x2+8(x3/3)x4/4+4x3/32x2+cx^4/2 - 2x^2 + 8(x^-3 / 3) - x^4/4 + 4x^3/3 - 2x^2 + c

=[x4/2x4/4][2x2+2x2]+8x3/3+4x3/3+c[x^4/2 - x^4/4] - [ 2x^2 + 2 x^2] + 8x^-3/3 + 4x^3/3 + c

=[x4/4]4x2+8/3x3+4x3/3+c[Answer][x^4/4] - 4x^2 + 8/3x^3 + 4x^3/3 + c [Answer]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS