Question #124084
3. (a) Find the volume of the solid generated by revolving the region bounded by the curves y=x^2 and y=4x−x^2 about the line y=6.

(b) Sketch the graph of a continuous function f(x) satisfying the following properties:
(i) the graph of f goes through the origin
(ii) f′(−2) = 0 and f′(3) = 0.
(iii) f′(x) > 0 on the intervals (−∞,−2) and (−2,3).
(iv) f′(x) < 0 on the interval (3,∞).
Label all important points.
1
Expert's answer
2020-06-28T18:36:38-0400

ANSWER (a) : 64π3\frac { 64\pi }{ 3 }

Explanation. We pass to the new coordinate system y1=y6 , x1=x{ y }_{ 1 }=y-6\ ,\ { x }_{ 1 }=x\quad.The volume of the solid generated by revolving the region bounded by the curves y=f(x),y=6,x=a,x=b(axb)y=f(x),y=6, x=a,x=b(a\le x\le b) around the line y=6y=6 is calculated by the formula V=πab(f(x)6)2dxV= \pi \int _{ a }^{ b }{ { \left( f(x)-6 \right) }^{ 2 } } dx\quad. Therefore , V=π02[(x26)2 (4xx26)2]dxV=\pi \int _{ 0 }^{ 2 }{ \left[ { { \left( { x }^{ 2 }-6 \right) }^{ 2 } }^{ \ }-{ \left( 4x-{ x }^{ 2 }-6 \right) }^{ 2 } \right] dx }=π02(x264x+x2+6)(x26+4xx26)dx==\pi \int _{ 0 }^{ 2 }{ ({ x }^{ 2 }-6-4x+{ x }^{ 2 } } +6)({ x }^{ 2 }-6+4x-{ x }^{ 2 }-6)dx= =π02(2x2 4x)(4x12)dx=8π02(x35x2+6x)dx==\pi \int _{ 0 }^{ 2 }{ ({ 2x }^{ 2 }\ -4x)(4x-12)dx=8\pi \int _{ 0 }^{ 2 }{ ( } { x }^{ 3 } } -5{ x }^{ 2 }+6x)dx= =8π[x445x33+3x2]20==8\pi \left[ \frac { { x }^{ 4 } }{ 4 } -\frac { 5{ x }^{ 3 } }{ 3 } +3{ x }^{ 2 }\quad \right] \begin{matrix} 2 \\ 0 \end{matrix}= =8π(4403+12) =64π3=8\pi \left( 4-\frac { 40 }{ 3 } +12 \right) \ =\frac { 64\pi }{ 3 }


ANSWER (b)

(i) for example :f(x)=(x+2)3(x143)1123f(x)=-{ (x+2) }^{ 3 }\left( x-\frac { 14 }{ 3 } \right) -\frac { 112 }{ 3 } \quad

(ii) the line y=f(2)y=f(-2) is the tangent line at the point (2,f(2))(-2,f(-2)) , the line y=f(3)y=f(3) is the tangent line at the point (3,f(3))(3,f(3))

(iii) function increases in intervals (,2),(2,3)\left( -\infty ,-2 \right), (-2,3) . So x=2x=-2 is not an extremum point.(iv)function decreases in the interval (3,+)(3,+\infty ) and increases in the interval (-2,3) . So, x=3 is the maximum point


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS