limx→0;y→04x2y4x4+y2=[00]=[y=x2]=limx→04x44x4+x4=45≠0\lim\limits_{x\to 0; y\to 0}\frac{4x^2y}{4x^4+y^2}=[\frac{0}{0}]=[y=x^2]=\lim\limits_{x\to 0}\frac{4x^4}{4x^4+x^4}= \frac{4}{5}\ne 0x→0;y→0lim4x4+y24x2y=[00]=[y=x2]=x→0lim4x4+x44x4=54=0
Therefore the function is not continuous at (0,0)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments