Answer to Question #105383 in Calculus for Ajay

Question #105383
(1) Calculate the Jacobian of ∂(x,y,z)/∂(u,v,w) for x=√w ucosv,y=√w usinv and z=w–1 at the point (5,π/2 ,3)
(2) Find the minimum value of the function f(x,y)=x^2+2y^2 on circle x2+y^2=1
(3) If u=Sin^(–1) (x^2+u^2)^(1/5) then show that x∂u/∂x +y∂u/∂y=(2/5)tanu
(4) Let the function f be defined by
f(x,y)=3x^2y^4/x^4+y^8 ,(x,y)≠(0,0)
=0 (x,y)=(0,0)
Show that f has directional derivatives in
all direction at (0,0)
(5) Verify that f(x,y) =exp(–k^2 t)Sin(Kx)
satisfies the heat equation ∂f/∂t=∂^2f/∂x^2 where k is a constant
1
Expert's answer
2020-03-16T12:04:54-0400

1.x=wucosv;y=wusinv;z=w1x=\sqrt{w}ucos v ; y= \sqrt{w}usin v ; z=w-1

(x,y,z)(u,v,w)=[wcosvuwcosvucosv2wwsinvuwsinvusinv2w001]\frac{∂(x,y,z)}{∂(u,v,w)}=\begin{bmatrix} \sqrt{w}cos v & -u\sqrt{w}cosv & \frac{ucosv}{2\sqrt{w}}\\ \sqrt{w} sin v &u\sqrt{w}sinv & \frac{usinv}{2\sqrt{w}}\\ 0&0 & 1 \end{bmatrix}

(x,y,z)(u,v,w)=wcosv(uwcosv)+uwsinv(wsinv)\frac{∂(x,y,z)}{∂(u,v,w)}=\sqrt{w}cosv(u\sqrt{w}cosv)+u\sqrt{w}sinv(\sqrt{w}sinv)

(x,y,z)(u,v,w)=uwcos2v+uwsin2v=uw=15\frac{∂(x,y,z)}{∂(u,v,w)}=uwcos^2v+uwsin^2v=uw=15


2.f(x,y)=x2+2y2f(x,y)=x^2+2y^2

We know on the circle x2+y2=1x^2+y^2=1

So, f(x,y)=1+y2f(x,y)=1+y^2

Minimum value of f(x,y) is equal to 1 when coordinates are (1,0).


3.u=sin1(x2+y2)1/5u=sin^{-1}(x^2+y^2)^{1/5}

u/x=(2/5)(x2+y2)4/5x2/1(x2+y2)2/5∂u/∂x = (2/5)(x^2+y^2)^{-4/5}x^2 / \sqrt {1-(x^2+y^2)^{2/5}}

u/y=(2/5)(x2+y2)4/5y2/1(x2+y2)2/5∂u/∂y = (2/5)(x^2+y^2)^{-4/5}y^2 / \sqrt {1-(x^2+y^2)^{2/5}}

xu/x+yu/y=(2/5)(x2+y2)1/5/1(x2+y2)2/5x∂u/∂x +y∂u/∂y=(2/5)(x^2+y^2)^{1/5}/\sqrt{1-(x^2+y^2)^{2/5}}

xu/x+yu/y=(2/5)tanux∂u/∂x +y∂u/∂y=(2/5)tan u



4.Fractional Derivative is defined as Duf(x,y)=limt0f(x+tu1,y+tu2)f(x,y)tD_uf(x,y)=lim_{t\to0} \frac{f(x+tu_1,y+tu_2)-f(x,y)}{t}

Duf(0,0)=limt0f(tu1,tu2)f(0,0)tD_uf(0,0)=lim_{t\to0} \frac{f(tu_1,tu_2)-f(0,0)}{t}

Duf(0,0)=limt0f(tu1,tu2)0tD_uf(0,0)=lim_{t\to0} \frac{f(tu_1,tu_2)-0}{t}

Duf(0,0)=limt03(tu1)2(tu2)4/(tu1)4+(tu2)8)0tD_uf(0,0)=lim_{t\to0} \frac{3(tu_1)^2(tu_2)^4/(tu_1)^4+(tu_2)^8)-0}{t}

Duf(0,0)=00u14=0D_uf(0,0)=\frac{0-0}{u_1^4}=0 ,Thus, Fractional Derivative exists in all direction at (0,0).


5.f(x,t)=ek2tSin(kx)f(x,t) =e^{–k^2 t}Sin(kx)

f/t=ek2tSin(kx)(k2)∂f/∂t=e^{–k^2 t}Sin(kx)(-k^2)

2f/x2=ek2tSin(kx)(k2)∂^2f/∂x^2=e^{–k^2 t}Sin(kx)(-k^2)

f/t=2f/x2∂f/∂t=∂^2f/∂x^2 (Proved)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment