1.x = w u c o s v ; y = w u s i n v ; z = w − 1 x=\sqrt{w}ucos v ; y= \sqrt{w}usin v ; z=w-1 x = w u cos v ; y = w u s in v ; z = w − 1
∂ ( x , y , z ) ∂ ( u , v , w ) = [ w c o s v − u w c o s v u c o s v 2 w w s i n v u w s i n v u s i n v 2 w 0 0 1 ] \frac{∂(x,y,z)}{∂(u,v,w)}=\begin{bmatrix}
\sqrt{w}cos v & -u\sqrt{w}cosv & \frac{ucosv}{2\sqrt{w}}\\
\sqrt{w} sin v &u\sqrt{w}sinv & \frac{usinv}{2\sqrt{w}}\\
0&0 & 1
\end{bmatrix} ∂ ( u , v , w ) ∂ ( x , y , z ) = ⎣ ⎡ w cos v w s in v 0 − u w cos v u w s in v 0 2 w u cos v 2 w u s in v 1 ⎦ ⎤
∂ ( x , y , z ) ∂ ( u , v , w ) = w c o s v ( u w c o s v ) + u w s i n v ( w s i n v ) \frac{∂(x,y,z)}{∂(u,v,w)}=\sqrt{w}cosv(u\sqrt{w}cosv)+u\sqrt{w}sinv(\sqrt{w}sinv) ∂ ( u , v , w ) ∂ ( x , y , z ) = w cos v ( u w cos v ) + u w s in v ( w s in v )
∂ ( x , y , z ) ∂ ( u , v , w ) = u w c o s 2 v + u w s i n 2 v = u w = 15 \frac{∂(x,y,z)}{∂(u,v,w)}=uwcos^2v+uwsin^2v=uw=15 ∂ ( u , v , w ) ∂ ( x , y , z ) = u w co s 2 v + u w s i n 2 v = u w = 15
2.f ( x , y ) = x 2 + 2 y 2 f(x,y)=x^2+2y^2 f ( x , y ) = x 2 + 2 y 2
We know on the circle x 2 + y 2 = 1 x^2+y^2=1 x 2 + y 2 = 1
So, f ( x , y ) = 1 + y 2 f(x,y)=1+y^2 f ( x , y ) = 1 + y 2
Minimum value of f(x,y) is equal to 1 when coordinates are (1,0).
3.u = s i n − 1 ( x 2 + y 2 ) 1 / 5 u=sin^{-1}(x^2+y^2)^{1/5} u = s i n − 1 ( x 2 + y 2 ) 1/5
∂ u / ∂ x = ( 2 / 5 ) ( x 2 + y 2 ) − 4 / 5 x 2 / 1 − ( x 2 + y 2 ) 2 / 5 ∂u/∂x = (2/5)(x^2+y^2)^{-4/5}x^2 / \sqrt {1-(x^2+y^2)^{2/5}} ∂ u / ∂ x = ( 2/5 ) ( x 2 + y 2 ) − 4/5 x 2 / 1 − ( x 2 + y 2 ) 2/5
∂ u / ∂ y = ( 2 / 5 ) ( x 2 + y 2 ) − 4 / 5 y 2 / 1 − ( x 2 + y 2 ) 2 / 5 ∂u/∂y = (2/5)(x^2+y^2)^{-4/5}y^2 / \sqrt {1-(x^2+y^2)^{2/5}} ∂ u / ∂ y = ( 2/5 ) ( x 2 + y 2 ) − 4/5 y 2 / 1 − ( x 2 + y 2 ) 2/5
x ∂ u / ∂ x + y ∂ u / ∂ y = ( 2 / 5 ) ( x 2 + y 2 ) 1 / 5 / 1 − ( x 2 + y 2 ) 2 / 5 x∂u/∂x +y∂u/∂y=(2/5)(x^2+y^2)^{1/5}/\sqrt{1-(x^2+y^2)^{2/5}} x ∂ u / ∂ x + y ∂ u / ∂ y = ( 2/5 ) ( x 2 + y 2 ) 1/5 / 1 − ( x 2 + y 2 ) 2/5
x ∂ u / ∂ x + y ∂ u / ∂ y = ( 2 / 5 ) t a n u x∂u/∂x +y∂u/∂y=(2/5)tan u x ∂ u / ∂ x + y ∂ u / ∂ y = ( 2/5 ) t an u
4.Fractional Derivative is defined as D u f ( x , y ) = l i m t → 0 f ( x + t u 1 , y + t u 2 ) − f ( x , y ) t D_uf(x,y)=lim_{t\to0} \frac{f(x+tu_1,y+tu_2)-f(x,y)}{t} D u f ( x , y ) = l i m t → 0 t f ( x + t u 1 , y + t u 2 ) − f ( x , y )
D u f ( 0 , 0 ) = l i m t → 0 f ( t u 1 , t u 2 ) − f ( 0 , 0 ) t D_uf(0,0)=lim_{t\to0} \frac{f(tu_1,tu_2)-f(0,0)}{t} D u f ( 0 , 0 ) = l i m t → 0 t f ( t u 1 , t u 2 ) − f ( 0 , 0 )
D u f ( 0 , 0 ) = l i m t → 0 f ( t u 1 , t u 2 ) − 0 t D_uf(0,0)=lim_{t\to0} \frac{f(tu_1,tu_2)-0}{t} D u f ( 0 , 0 ) = l i m t → 0 t f ( t u 1 , t u 2 ) − 0
D u f ( 0 , 0 ) = l i m t → 0 3 ( t u 1 ) 2 ( t u 2 ) 4 / ( t u 1 ) 4 + ( t u 2 ) 8 ) − 0 t D_uf(0,0)=lim_{t\to0} \frac{3(tu_1)^2(tu_2)^4/(tu_1)^4+(tu_2)^8)-0}{t} D u f ( 0 , 0 ) = l i m t → 0 t 3 ( t u 1 ) 2 ( t u 2 ) 4 / ( t u 1 ) 4 + ( t u 2 ) 8 ) − 0
D u f ( 0 , 0 ) = 0 − 0 u 1 4 = 0 D_uf(0,0)=\frac{0-0}{u_1^4}=0 D u f ( 0 , 0 ) = u 1 4 0 − 0 = 0 ,Thus, Fractional Derivative exists in all direction at (0,0).
5.f ( x , t ) = e – k 2 t S i n ( k x ) f(x,t) =e^{–k^2 t}Sin(kx) f ( x , t ) = e – k 2 t S in ( k x )
∂ f / ∂ t = e – k 2 t S i n ( k x ) ( − k 2 ) ∂f/∂t=e^{–k^2 t}Sin(kx)(-k^2) ∂ f / ∂ t = e – k 2 t S in ( k x ) ( − k 2 )
∂ 2 f / ∂ x 2 = e – k 2 t S i n ( k x ) ( − k 2 ) ∂^2f/∂x^2=e^{–k^2 t}Sin(kx)(-k^2) ∂ 2 f / ∂ x 2 = e – k 2 t S in ( k x ) ( − k 2 )
∂ f / ∂ t = ∂ 2 f / ∂ x 2 ∂f/∂t=∂^2f/∂x^2 ∂ f / ∂ t = ∂ 2 f / ∂ x 2 (Proved)
Comments
Leave a comment