1."x=\\sqrt{w}ucos v ; y= \\sqrt{w}usin v ; z=w-1"
"\\frac{\u2202(x,y,z)}{\u2202(u,v,w)}=\\begin{bmatrix}\n \\sqrt{w}cos v & -u\\sqrt{w}cosv & \\frac{ucosv}{2\\sqrt{w}}\\\\\n \\sqrt{w} sin v &u\\sqrt{w}sinv & \\frac{usinv}{2\\sqrt{w}}\\\\\n 0&0 & 1\n\\end{bmatrix}"
"\\frac{\u2202(x,y,z)}{\u2202(u,v,w)}=\\sqrt{w}cosv(u\\sqrt{w}cosv)+u\\sqrt{w}sinv(\\sqrt{w}sinv)"
"\\frac{\u2202(x,y,z)}{\u2202(u,v,w)}=uwcos^2v+uwsin^2v=uw=15"
2."f(x,y)=x^2+2y^2"
We know on the circle "x^2+y^2=1"
So, "f(x,y)=1+y^2"
Minimum value of f(x,y) is equal to 1 when coordinates are (1,0).
3."u=sin^{-1}(x^2+y^2)^{1\/5}"
"\u2202u\/\u2202x = (2\/5)(x^2+y^2)^{-4\/5}x^2 \/ \\sqrt {1-(x^2+y^2)^{2\/5}}"
"\u2202u\/\u2202y = (2\/5)(x^2+y^2)^{-4\/5}y^2 \/ \\sqrt {1-(x^2+y^2)^{2\/5}}"
"x\u2202u\/\u2202x +y\u2202u\/\u2202y=(2\/5)(x^2+y^2)^{1\/5}\/\\sqrt{1-(x^2+y^2)^{2\/5}}"
"x\u2202u\/\u2202x +y\u2202u\/\u2202y=(2\/5)tan u"
4.Fractional Derivative is defined as "D_uf(x,y)=lim_{t\\to0} \\frac{f(x+tu_1,y+tu_2)-f(x,y)}{t}"
"D_uf(0,0)=lim_{t\\to0} \\frac{f(tu_1,tu_2)-f(0,0)}{t}"
"D_uf(0,0)=lim_{t\\to0} \\frac{f(tu_1,tu_2)-0}{t}"
"D_uf(0,0)=lim_{t\\to0} \\frac{3(tu_1)^2(tu_2)^4\/(tu_1)^4+(tu_2)^8)-0}{t}"
"D_uf(0,0)=\\frac{0-0}{u_1^4}=0" ,Thus, Fractional Derivative exists in all direction at (0,0).
5."f(x,t) =e^{\u2013k^2 t}Sin(kx)"
"\u2202f\/\u2202t=e^{\u2013k^2 t}Sin(kx)(-k^2)"
"\u2202^2f\/\u2202x^2=e^{\u2013k^2 t}Sin(kx)(-k^2)"
"\u2202f\/\u2202t=\u2202^2f\/\u2202x^2" (Proved)
Comments
Leave a comment