Leibniz integral rule:
d d x ( ∫ a ( x ) b ( x ) f ( x , t ) d t ) = f ( x , b ( x ) ) × d d x b ( x ) − f ( x , a ( x ) ) × d d x a ( x ) + ∫ a ( x ) b ( x ) ∂ ∂ x f ( x , t ) d t \frac{d}{dx}(\int_{a(x)}^{b(x)} f(x,t)dt)= f(x,b(x))\times \frac{d}{dx}b(x)-f(x,a(x))\times\frac{d}{dx}a(x) +\int_{a(x)}^{b(x)}\frac{\partial}{\partial x}f(x,t)dt d x d ( ∫ a ( x ) b ( x ) f ( x , t ) d t ) = f ( x , b ( x )) × d x d b ( x ) − f ( x , a ( x )) × d x d a ( x ) + ∫ a ( x ) b ( x ) ∂ x ∂ f ( x , t ) d t
In your case :
d d x ∫ 1 x t a n 2 ( t 2 ) d t = ? \frac{d}{dx} \int_{1}^{\sqrt{x}} tan^2(t^2)dt= ? d x d ∫ 1 x t a n 2 ( t 2 ) d t = ?
Then:
a ( x ) = 1 a(x)=1 a ( x ) = 1
b ( x ) = x b(x) = \sqrt{x} b ( x ) = x
f ( x , t ) = t a n 2 ( t 2 ) f(x,t)=tan^2(t^2) f ( x , t ) = t a n 2 ( t 2 )
Take derivatives with respect to x:
d d x a ( x ) = d d x 1 = 0 \frac{d}{dx}a(x) = \frac{d}{dx}1 = 0 d x d a ( x ) = d x d 1 = 0
d d x b ( x ) = d d x x = 1 2 x \frac{d}{dx}b(x)=\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}} d x d b ( x ) = d x d x = 2 x 1
∂ ∂ x f ( x , t ) = ∂ ∂ x t a n 2 ( t 2 ) = 0 \frac{\partial }{\partial x}f(x,t) = \frac{\partial }{\partial x}tan^2(t^2)=0 ∂ x ∂ f ( x , t ) = ∂ x ∂ t a n 2 ( t 2 ) = 0
(comment: in this case f(x,t) is independent of the variable x, so partial derivative with respect to t equals zero).
f ( x , b ( x ) ) f(x,b(x)) f ( x , b ( x )) means f(x,t) with a fixed value of a variable t, t takes on a value equal to b(x).
Eventually we have:
d d x ∫ 1 x t a n 2 ( t 2 ) d t = t a n 2 ( x ) 2 x − t a n 2 ( 1 2 ) × 0 + ∫ 1 x 0 d t = t a n 2 ( x ) 2 x \frac{d}{dx} \int_{1}^{\sqrt{x}} tan^2(t^2)dt=\frac{ tan^2(x)}{2\sqrt{x}}- tan^2(1^2)\times 0 +\int_{1}^{\sqrt{x}}0dt= \frac{ tan^2(x)}{2\sqrt{x}} d x d ∫ 1 x t a n 2 ( t 2 ) d t = 2 x t a n 2 ( x ) − t a n 2 ( 1 2 ) × 0 + ∫ 1 x 0 d t = 2 x t a n 2 ( x )
Comments