Leibniz integral rule:
"\\frac{d}{dx}(\\int_{a(x)}^{b(x)} f(x,t)dt)= f(x,b(x))\\times \\frac{d}{dx}b(x)-f(x,a(x))\\times\\frac{d}{dx}a(x) +\\int_{a(x)}^{b(x)}\\frac{\\partial}{\\partial x}f(x,t)dt"
In your case :
"\\frac{d}{dx} \\int_{1}^{\\sqrt{x}} tan^2(t^2)dt= ?"
Then:
"a(x)=1"
"b(x) = \\sqrt{x}"
"f(x,t)=tan^2(t^2)"
Take derivatives with respect to x:
"\\frac{d}{dx}a(x) = \\frac{d}{dx}1 = 0"
"\\frac{d}{dx}b(x)=\\frac{d}{dx}\\sqrt{x} = \\frac{1}{2\\sqrt{x}}"
"\\frac{\\partial }{\\partial x}f(x,t) = \\frac{\\partial }{\\partial x}tan^2(t^2)=0"
(comment: in this case f(x,t) is independent of the variable x, so partial derivative with respect to t equals zero).
"f(x,b(x))" means f(x,t) with a fixed value of a variable t, t takes on a value equal to b(x).
Eventually we have:
"\\frac{d}{dx} \\int_{1}^{\\sqrt{x}} tan^2(t^2)dt=\\frac{ tan^2(x)}{2\\sqrt{x}}- tan^2(1^2)\\times 0 +\\int_{1}^{\\sqrt{x}}0dt= \\frac{ tan^2(x)}{2\\sqrt{x}}"
Comments
Leave a comment