The initial volume of the pool water equals
"V_0=Ah=10\\cdot 1.5=15m^3."The final volume could be defined from
"V_0=y(T-T_0)V,\\\\\nV=\\frac{V_0}{y(T-T_0)}."
Thus, an elementary volume of water of height "dz" is given by
"dV=\\frac{Adz}{y(T(z)-T_0)},\\\\\ndV=\\frac{Adz}{y\\cdot 15e^{+0.5z}}."Integrate
"V=\\int^h_0\\frac{Adz}{y\\cdot 15e^{0.5z}},\\\\\nV=\\frac{A}{15y}\\int^h_0e^{-0.5z}dz,\\\\\nV=\\frac{A}{15y}\\cdot\\left.\\frac{e^{-0.5z}}{-0.5}\\right\\vert ^h_0."Substitute
"V=\\frac{10}{15\\cdot 500\\cdot 10^{-6}}\\cdot\\frac{e^{-0.5\\cdot 1.5}-1}{-0.5}=1407m^3"Thus, the pool water volume increased on "V-V_0=1407-15=\\bm{1392 m^3}."
The result is unrealistic due to unrealistic dependency of the water temperature on the depth "T (z) = T_0 + 15e^{+0,5z}" .
Comments
Leave a comment