Given plane equation is (x+y+2z-2)=0, sphere equation is (x²+y²+z²+3x+3y-z)=1
"x^2+2\\cdot{3 \\over 2}x+{9 \\over 4}-{9 \\over 4}+y^2+2\\cdot{3 \\over 2}y+{9 \\over 4}-{9 \\over 4}+"
"+z^2-2\\cdot{1 \\over 2}z+{1 \\over 4}-{1 \\over 4}=1"
"\\big(x+{3 \\over 2}\\big)^2+\\big(y+{3 \\over 2}\\big)^2+\\big(z-{1 \\over 2}\\big)^2={23 \\over 4}"
"Centre (-u,-v,-w)=\\big(-{3 \\over 2},-{3 \\over 2},{1 \\over 2}\\big)"
"Radius\\ \\ r=\\sqrt{{23 \\over 4}}={\\sqrt{23} \\over 2}"
Length of the perpendicular from "\\big(-\\dfrac{3}{2},-\\dfrac{3}{2},\\dfrac{1}{2}\\big)" to the plane (x+y+2z-2) =0 is
"OM=\\dfrac{\\big|ax_1+by_1+cz_1+d\\big|}{\\sqrt{a^2+b^2+c^2}}" Here, "a=1,b=1,c=2,d=-2,x_1=-\\dfrac{3}{2},y_1=-\\dfrac{3}{2},z_1=\\dfrac{1}{2}"
"OM=\\dfrac{\\big|-\\dfrac{3}{2}-\\dfrac{3}{2}+2\\cdot\\dfrac{1}{2}-2\\big|}{\\sqrt{1^2+1^2+2^2}}=\\dfrac{2\\sqrt6}{3}"
"AM^2=OA^2-OM^2=({\\sqrt{23} \\over 2})^2-({2\\sqrt6 \\over 3})^2={37 \\over 12}" The equation of the axis of the cylinder is
"{x-\\alpha \\over l}={y-\\beta \\over m}={z-\\gamma \\over n}"
Here, "\\alpha=-\\dfrac{3}{2},\\beta=-\\dfrac{3}{2},\\gamma=\\dfrac{1}{2}, l=1,m=1,n=2."
"{x+\\dfrac{3}{2} \\over 1}={y+\\dfrac{3}{2} \\over 1}={z-\\dfrac{1}{2} \\over 2}"
"l^2+m^2+n^2=6"
"Radius\\ \\ r^*=AM=\\sqrt{{37 \\over 12}}={\\sqrt{111} \\over 6}" The equation of Right Circular Cylinder is,
"[n(y-\\beta)-m(z-\\gamma)]^2+[l(z-\\gamma)-n(x-\\alpha)]^2+""+[m(x-\\alpha)-l(y-\\beta)]^2=(r^*)^2(l^2+m^2+n^2)"
"[2(y+{3 \\over 2})-1(z-{1\\over 2})]^2+[1(z-{1 \\over 2})-2(x+{3\\over 2})]^2+""+[1(x+{3 \\over 2})-1(y+{3 \\over 2})]^2=({\\sqrt{111} \\over 6})^2(6)"
"4y^2+z^2+{49 \\over 4}-4yz+14y-7z+z^2+4x^2+{49 \\over 4}-""-4xz-7z+14x+x^2-2xy+y^2={37 \\over 2}"
"5x^2+5y^2+2z^2-2xy-4xz-4yz+14x+14y-14z+6=0"
Comments
Leave a comment