Given plane equation is (x+y+2z-2)=0, sphere equation is (x²+y²+z²+3x+3y-z)=1
x 2 + 2 ⋅ 3 2 x + 9 4 − 9 4 + y 2 + 2 ⋅ 3 2 y + 9 4 − 9 4 + x^2+2\cdot{3 \over 2}x+{9 \over 4}-{9 \over 4}+y^2+2\cdot{3 \over 2}y+{9 \over 4}-{9 \over 4}+ x 2 + 2 ⋅ 2 3 x + 4 9 − 4 9 + y 2 + 2 ⋅ 2 3 y + 4 9 − 4 9 +
+ z 2 − 2 ⋅ 1 2 z + 1 4 − 1 4 = 1 +z^2-2\cdot{1 \over 2}z+{1 \over 4}-{1 \over 4}=1 + z 2 − 2 ⋅ 2 1 z + 4 1 − 4 1 = 1
( x + 3 2 ) 2 + ( y + 3 2 ) 2 + ( z − 1 2 ) 2 = 23 4 \big(x+{3 \over 2}\big)^2+\big(y+{3 \over 2}\big)^2+\big(z-{1 \over 2}\big)^2={23 \over 4} ( x + 2 3 ) 2 + ( y + 2 3 ) 2 + ( z − 2 1 ) 2 = 4 23
C e n t r e ( − u , − v , − w ) = ( − 3 2 , − 3 2 , 1 2 ) Centre (-u,-v,-w)=\big(-{3 \over 2},-{3 \over 2},{1 \over 2}\big) C e n t re ( − u , − v , − w ) = ( − 2 3 , − 2 3 , 2 1 )
R a d i u s r = 23 4 = 23 2 Radius\ \ r=\sqrt{{23 \over 4}}={\sqrt{23} \over 2} R a d i u s r = 4 23 = 2 23
Length of the perpendicular from ( − 3 2 , − 3 2 , 1 2 ) \big(-\dfrac{3}{2},-\dfrac{3}{2},\dfrac{1}{2}\big) ( − 2 3 , − 2 3 , 2 1 ) to the plane (x+y+2z-2) =0 is
O M = ∣ a x 1 + b y 1 + c z 1 + d ∣ a 2 + b 2 + c 2 OM=\dfrac{\big|ax_1+by_1+cz_1+d\big|}{\sqrt{a^2+b^2+c^2}} OM = a 2 + b 2 + c 2 ∣ ∣ a x 1 + b y 1 + c z 1 + d ∣ ∣ Here, a = 1 , b = 1 , c = 2 , d = − 2 , x 1 = − 3 2 , y 1 = − 3 2 , z 1 = 1 2 a=1,b=1,c=2,d=-2,x_1=-\dfrac{3}{2},y_1=-\dfrac{3}{2},z_1=\dfrac{1}{2} a = 1 , b = 1 , c = 2 , d = − 2 , x 1 = − 2 3 , y 1 = − 2 3 , z 1 = 2 1
O M = ∣ − 3 2 − 3 2 + 2 ⋅ 1 2 − 2 ∣ 1 2 + 1 2 + 2 2 = 2 6 3 OM=\dfrac{\big|-\dfrac{3}{2}-\dfrac{3}{2}+2\cdot\dfrac{1}{2}-2\big|}{\sqrt{1^2+1^2+2^2}}=\dfrac{2\sqrt6}{3} OM = 1 2 + 1 2 + 2 2 ∣ ∣ − 2 3 − 2 3 + 2 ⋅ 2 1 − 2 ∣ ∣ = 3 2 6
A M 2 = O A 2 − O M 2 = ( 23 2 ) 2 − ( 2 6 3 ) 2 = 37 12 AM^2=OA^2-OM^2=({\sqrt{23} \over 2})^2-({2\sqrt6 \over 3})^2={37 \over 12} A M 2 = O A 2 − O M 2 = ( 2 23 ) 2 − ( 3 2 6 ) 2 = 12 37 The equation of the axis of the cylinder is
x − α l = y − β m = z − γ n {x-\alpha \over l}={y-\beta \over m}={z-\gamma \over n} l x − α = m y − β = n z − γ
Here, α = − 3 2 , β = − 3 2 , γ = 1 2 , l = 1 , m = 1 , n = 2. \alpha=-\dfrac{3}{2},\beta=-\dfrac{3}{2},\gamma=\dfrac{1}{2}, l=1,m=1,n=2. α = − 2 3 , β = − 2 3 , γ = 2 1 , l = 1 , m = 1 , n = 2.
x + 3 2 1 = y + 3 2 1 = z − 1 2 2 {x+\dfrac{3}{2} \over 1}={y+\dfrac{3}{2} \over 1}={z-\dfrac{1}{2} \over 2} 1 x + 2 3 = 1 y + 2 3 = 2 z − 2 1
l 2 + m 2 + n 2 = 6 l^2+m^2+n^2=6 l 2 + m 2 + n 2 = 6
R a d i u s r ∗ = A M = 37 12 = 111 6 Radius\ \ r^*=AM=\sqrt{{37 \over 12}}={\sqrt{111} \over 6} R a d i u s r ∗ = A M = 12 37 = 6 111 The equation of Right Circular Cylinder is,
[ n ( y − β ) − m ( z − γ ) ] 2 + [ l ( z − γ ) − n ( x − α ) ] 2 + [n(y-\beta)-m(z-\gamma)]^2+[l(z-\gamma)-n(x-\alpha)]^2+ [ n ( y − β ) − m ( z − γ ) ] 2 + [ l ( z − γ ) − n ( x − α ) ] 2 + + [ m ( x − α ) − l ( y − β ) ] 2 = ( r ∗ ) 2 ( l 2 + m 2 + n 2 ) +[m(x-\alpha)-l(y-\beta)]^2=(r^*)^2(l^2+m^2+n^2) + [ m ( x − α ) − l ( y − β ) ] 2 = ( r ∗ ) 2 ( l 2 + m 2 + n 2 )
[ 2 ( y + 3 2 ) − 1 ( z − 1 2 ) ] 2 + [ 1 ( z − 1 2 ) − 2 ( x + 3 2 ) ] 2 + [2(y+{3 \over 2})-1(z-{1\over 2})]^2+[1(z-{1 \over 2})-2(x+{3\over 2})]^2+ [ 2 ( y + 2 3 ) − 1 ( z − 2 1 ) ] 2 + [ 1 ( z − 2 1 ) − 2 ( x + 2 3 ) ] 2 + + [ 1 ( x + 3 2 ) − 1 ( y + 3 2 ) ] 2 = ( 111 6 ) 2 ( 6 ) +[1(x+{3 \over 2})-1(y+{3 \over 2})]^2=({\sqrt{111} \over 6})^2(6) + [ 1 ( x + 2 3 ) − 1 ( y + 2 3 ) ] 2 = ( 6 111 ) 2 ( 6 )
4 y 2 + z 2 + 49 4 − 4 y z + 14 y − 7 z + z 2 + 4 x 2 + 49 4 − 4y^2+z^2+{49 \over 4}-4yz+14y-7z+z^2+4x^2+{49 \over 4}- 4 y 2 + z 2 + 4 49 − 4 yz + 14 y − 7 z + z 2 + 4 x 2 + 4 49 − − 4 x z − 7 z + 14 x + x 2 − 2 x y + y 2 = 37 2 -4xz-7z+14x+x^2-2xy+y^2={37 \over 2} − 4 x z − 7 z + 14 x + x 2 − 2 x y + y 2 = 2 37
5 x 2 + 5 y 2 + 2 z 2 − 2 x y − 4 x z − 4 y z + 14 x + 14 y − 14 z + 6 = 0 5x^2+5y^2+2z^2-2xy-4xz-4yz+14x+14y-14z+6=0 5 x 2 + 5 y 2 + 2 z 2 − 2 x y − 4 x z − 4 yz + 14 x + 14 y − 14 z + 6 = 0
Comments