Solution:
Equation of the plane passing through the line of intersection of the plane
A1x + B1y + C1z = d1 and -------------------- (1)
A2x + B2y + C2z = d2 -------------------- (2)
(A1x + B1y + C1z - d1 ) + "\\lambda" ( (A2x + B2y + C2z - d2 ) ------------------ (G)
Given equation of the planes
x+y-2z=1 ----------------------- (3)
and 2x+y-4z=3 ----------------------- (4)
Comparing equation (1) and (3)
A1 = 1 , B1 = 1 , C1 = -2 , d1 = 1
Comparing equation (2) and (4)
A2 = 2, B2= 1 , C2 = -4 , d2 = 3
Putting the values in equation (G)
( x + y -2z -1 ) + λ(2x + y -4z -3 )
x + y -2z -1 + 2λx + λy -4λz -3λ = 0
(1+2λ)x + (1+λ)y + (-2 -4λ) z + (-1-3λ) = 0 ---------------- (5)
Also, the plane is perpendicular to the plane x + y + z = 1 ------------- (6)
So the normal vector "\\overrightarrow{N}" to be the plane is perpendicular to the normal vector of x + y + z =1
"\\overrightarrow{N}" = (1+2λ)"\\widehat{i}" + (1+λ)"\\widehat{j}" + (-2 -4λ) "\\widehat{j}" --------------------- (7)
and "\\overrightarrow{n}" = 1"\\widehat{i}" + 1"\\widehat{j}" + 1"\\widehat{k}" ----------------------(8)
We know that two lines with direction ratio a1, b1,c1 and a2,b2,c2 are perpendicular if
a1a2 + b1b2 + c1c2 = 0 ----------------------(9)
From equation (7) and (8) we have
a1= (1+2λ)
b1 = (1+λ)
c1 = (-2 -4λ)
a2 = 1
b2 = 1
c2 = 1
Putting the values in equation (9)
(1+2λ) (1) + (1+λ) (1) + (-2 -4λ)(1) = 0
1+2λ + 1+λ -2 -4λ = 0
3λ - 4λ = 0
So we get λ = 0
Put the value of λ in equation (5)
(1+2λ)x + (1+λ)y + (-2 -4λ) z + (-1-3λ) = 0
(1+2*0)x + (1+0)y + (-2 -4*0) z + (-1-3*0) = 0
(1)x + (1)y +(-2)z -1 = 0
x + y-2z -1 =0 (Answer)
Comments
Leave a comment