Solution:
First we find the point of intersection of the line
y = x + c y=x+c y = x + c with the parabola
y 2 + 4 x = 0 : y^2+4x=0: y 2 + 4 x = 0 :
x 2 + 2 c x + c 2 + 4 c = 0 , x^2+2cx+c^2+4c=0, x 2 + 2 c x + c 2 + 4 c = 0 ,
x 2 + ( 2 c + 4 ) x + c 2 = 0 , x^2+(2c+4)x+c^2=0, x 2 + ( 2 c + 4 ) x + c 2 = 0 ,
D = 16 ( c + 1 ) , D=16(c+1), D = 16 ( c + 1 ) ,
x 1 = − c − 2 − 2 c + 1 , x 2 = − c − 2 + 2 c + 1 ; x_1=-c-2-2\sqrt{c+1},x_2=-c-2+2\sqrt{c+1}; x 1 = − c − 2 − 2 c + 1 , x 2 = − c − 2 + 2 c + 1 ; y 1 = − 2 − 2 c + 1 , y 2 = − 2 + c + 1 y_1=-2-2\sqrt{c+1},y_2=-2+\sqrt{c+1} y 1 = − 2 − 2 c + 1 , y 2 = − 2 + c + 1
So
( x 1 ; y 1 ) ( , x 2 ; y 2 ) (x_1;y_1)(,x_2;y_2) ( x 1 ; y 1 ) ( , x 2 ; y 2 ) - wanted points.
Then we have two equations of normal to the parabola at thease points.Find them.
The general equation of normal to the parabola
y 2 = 4 a x y^2=4ax y 2 = 4 a x at the point t is
y 0 x + 2 a y − 2 a y 0 − x 0 y 0 = 0 y_0x+2ay-2ay_0-x_0y_0=0 y 0 x + 2 a y − 2 a y 0 − x 0 y 0 = 0
Then, when
x 1 = − c − 2 − 2 c + 1 x_1=-c-2-2\sqrt{c+1} x 1 = − c − 2 − 2 c + 1 and
y 1 = − 2 − 2 c + 1 y_1=-2-2\sqrt{c+1} y 1 = − 2 − 2 c + 1
we hawe the equatin of the normal
( − 2 − 2 c + 1 ) x − 2 y − 6 ( 2 + c ) − 2 c + 1 ( 6 + c ) = 0 (-2-2\sqrt{c+1})x-2y-6(2+c)-2\sqrt{c+1}(6+c)=0 ( − 2 − 2 c + 1 ) x − 2 y − 6 ( 2 + c ) − 2 c + 1 ( 6 + c ) = 0 or
y = ( − 1 − c + 1 ) x − 3 ( 2 + c ) − c + 1 ( 6 + c ) , y=(-1-\sqrt{c+1})x-3(2+c)-\sqrt{c+1}(6+c), y = ( − 1 − c + 1 ) x − 3 ( 2 + c ) − c + 1 ( 6 + c ) ,
when
x 2 = − c − 2 + 2 c + 1 , x_2=-c-2+2\sqrt{c+1}, x 2 = − c − 2 + 2 c + 1 , y 2 = − 2 + 2 c + 1 y_2=-2+2\sqrt{c+1} y 2 = − 2 + 2 c + 1 we hawe the equatin of the normal
( − 2 + 2 c + 1 ) x − 2 y − 6 ( 2 + c ) + 2 c + 1 ( 6 + c ) = 0 (-2+2\sqrt{c+1})x-2y-6(2+c)+2\sqrt{c+1}(6+c)=0 ( − 2 + 2 c + 1 ) x − 2 y − 6 ( 2 + c ) + 2 c + 1 ( 6 + c ) = 0 or
y = ( − 1 + c + 1 ) x − 3 ( 2 + c ) + c + 1 ( 6 + c ) . y=(-1+\sqrt{c+1})x-3(2+c)+\sqrt{c+1}(6+c). y = ( − 1 + c + 1 ) x − 3 ( 2 + c ) + c + 1 ( 6 + c ) .
Ansver: equations of the normal to the parabola
y 2 + 4 x = 0 y^2+4x=0 y 2 + 4 x = 0
at the point where the line
y = x + c y=x+c y = x + c
touches it is
y = ( − 1 − c + 1 ) x − 3 ( 2 + c ) − c + 1 ( 6 + c ) y=(-1-\sqrt{c+1})x-3(2+c)-\sqrt{c+1}(6+c) y = ( − 1 − c + 1 ) x − 3 ( 2 + c ) − c + 1 ( 6 + c ) and
y = ( − 1 + c + 1 ) x − 3 ( 2 + c ) + c + 1 ( 6 + c ) . y=(-1+\sqrt{c+1})x-3(2+c)+\sqrt{c+1}(6+c). y = ( − 1 + c + 1 ) x − 3 ( 2 + c ) + c + 1 ( 6 + c ) .
Comments