We have an equation of conicoid
"F(x,y,z) = x^2 + y^2 - kz"And the point
"M(k,k,2k)"
Let’s find a derivative
"F\u2019x(x,y,z) = 2x; F'x(M) = 2k"
So equation of tangent plane is:
"F\u2019x(M)*(x-k) + F\u2019y(M)*(y-k) + F\u2019z(M)*(z-2k) = 0"
Answer:
"2kx + 2ky - kz -2k^2 = 0"if k > 0
if k < 0
Comments
Leave a comment