We have an equation of conicoid
F(x,y,z)=x2+y2−kz
And the point
M(k,k,2k)
Let’s find a derivative
F’x(x,y,z)=2x;F′x(M)=2k
F’y(x,y,z)=2y;F’y(M)=2k
F’z(x,y,z)=−k;F’x(M)=−k
So equation of tangent plane is:
F’x(M)∗(x−k)+F’y(M)∗(y−k)+F’z(M)∗(z−2k)=0
2k∗(x−k)+2k∗(y−k)∗−k∗(z−2k)=2kx+2ky−kz−2k2=0
Answer:
2kx+2ky−kz−2k2=0 if k > 0
if k < 0
Comments