a.
( π₯ β 3 ) 2 + ( π¦ + 1 ) 2 = 5 (π₯β3)^2+ (π¦+1)^2= 5 ( x β 3 ) 2 + ( y + 1 ) 2 = 5 The coordinates of the centre of the circle are D ( 3 , β 1 ) . D(3, -1). D ( 3 , β 1 ) .
If A B AB A B is the diameter of the circle, then D D D is the midpoint of A B AB A B
x D = x A + x B 2 = > x B = 2 x D β x A x_D=\dfrac{x_A+x_B}{2}=>x_B=2x_D-x_A x D β = 2 x A β + x B β β => x B β = 2 x D β β x A β
y D = y A + y B 2 = > y B = 2 y D β y A y_D=\dfrac{y_A+y_B}{2}=>y_B=2y_D-y_A y D β = 2 y A β + y B β β => y B β = 2 y D β β y A β
x B = 2 ( 3 ) β 1 = 5 , y B = 2 ( β 1 ) β ( β 2 ) = 0 x_B=2(3)-1=5, y_B=2(-1)-(-2)=0 x B β = 2 ( 3 ) β 1 = 5 , y B β = 2 ( β 1 ) β ( β 2 ) = 0 Point B ( 5 , 0 ) B(5, 0) B ( 5 , 0 )
b.
Point C ( 2 , 1 ) C(2, 1) C ( 2 , 1 )
C A β = β¨ 1 β 2 , β 2 β 1 β© \overrightarrow{CA}=\langle1-2, -2-1\rangle C A = β¨ 1 β 2 , β 2 β 1 β©
C B β = β¨ 5 β 2 , 0 β 1 β© \overrightarrow{CB}=\langle5-2, 0-1\rangle CB = β¨ 5 β 2 , 0 β 1 β©
C A β β
C B β = β 1 ( 3 ) + ( β 3 ) ( β 1 ) = β 3 + 3 = 0 \overrightarrow{CA}\cdot \overrightarrow{CB}=-1(3)+(-3)(-1)=-3+3=0 C A β
CB = β 1 ( 3 ) + ( β 3 ) ( β 1 ) = β 3 + 3 = 0
β£ C A β β£ =ΜΈ 0 , β£ C B β β£ =ΜΈ 0 |\overrightarrow{CA}|\not=0, |\overrightarrow{CB}|\not=0 β£ C A β£ ξ = 0 , β£ CB β£ ξ = 0 Therefore C A β β₯ C B β , \overrightarrow{CA}\perp \overrightarrow{CB}, C A β₯ CB , and β A C B = 90 Β° . \angle ACB=90\degree. β A CB = 90Β°.
Comments