in the triangle ABC having vertices at A(-2,5), B(6,1) and C(-2,-3), find the length of the median from vertex B to side AC.
Given: A(-2,5), B(6,1) and C(-2,-3)
Mid point of AC = "(\\frac {x_1+x_2}{2}, \\frac{y_1+y_2}{2})=(\\frac{-2+6}{2}, \\frac{5+1}{2})=(2, 3)"
Let D be the mid point of AC so coordinate of D is (2,3).
Now, length of median from B to AC is BD.
B(6,1), D(2,3)
"BD=\\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}=\\sqrt{(6-2)^2+(1-3)^2}=\\sqrt{16+4}=2\\sqrt{5}\\ \\text{unit}"
Comments
Leave a comment