Question #293926

𝑃 and 𝑄 are the points (3,1) and (−2,−9) respectively. Calculate:

a. The distance 𝑃𝑄

b. The midpoint of the line joining 𝑃 to 𝑄

c. The gradient of the line 𝑃𝑄

d. The gradient of a line perpendicular to 𝑃𝑄



1
Expert's answer
2022-02-06T16:47:34-0500

a.


PQ=(23)2+(91)2=125PQ=\sqrt{(-2-3)^2+(-9-1)^2}=\sqrt{125}

=55 (units)=5\sqrt{5}\ (units)

b.


xM=xP+xQ2=322=12x_M=\dfrac{x_P+x_Q}{2}=\dfrac{3-2}{2}=\dfrac{1}{2}

yM=yP+yQ2=192=4y_M=\dfrac{y_P+y_Q}{2}=\dfrac{1-9}{2}=-4

M(1/2,4)M(1/2, -4)


c.


gradient1=m1=yQyPxQxP=9123=2gradient_1=m_1=\dfrac{y_Q-y_P}{x_Q-x_P}=\dfrac{-9-1}{-2-3}=2

gradient1=2gradient_1=2


d.


gradient2=1gradient1=12gradient_2=-\dfrac{1}{gradient_1}=-\dfrac{1}{2}

gradient2=12gradient_2=-\dfrac{1}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS