Question #293622

Examine which of the following conicoids are central and which are non-central. Also determine which of the central conicoids have centre at the origin.

(i) 𝑥2 + 𝑦2 + 𝑧2 + 4𝑥 + 3𝑦 − 𝑧 = 0

(ii) 2𝑥2 − 𝑦2 − 𝑧2 + 𝑥𝑦 + 𝑦𝑧 − 𝑧𝑥 = 1

(iii) 𝑥2 + 𝑦2 − 𝑧2 − 2𝑥𝑦 − 3𝑦𝑧 − 6𝑧𝑥 + 𝑥 − 2𝑦 + 5𝑧 + 4 = 0


1
Expert's answer
2022-02-14T12:04:19-0500

A conicoid given by equation

ax2+by2+cz2+2fyz+2gxz+2hxyax^2 +by^2 +cz^2 +2fyz+2gxz+2hxy




+2ux+2vy+2wz+d=0+2ux+2vy+2wz+d=0

has a point (x0,y0,z0)(x_0 ,y_0 ,z_0 ) as a center if


{ax0+hy0+gz0+u=0hx0+by0+fz0+v=0gx0+fy0+cz0+w=0\begin{cases} ax_0+hy_0+gz_0+u=0 \\ hx_0+by_0+fz_0+v=0 \\ gx_0+fy_0+cz_0+w=0 \end{cases}



(i)

a=1,b=1,c=1,a=1, b=1, c=1,

f=g=h=0,f=g=h=0,

u=2,v=3/2,w=1/2u=2,v=3/2, w=-1/2

Then


{x0+2=0y0+3/2=0z01/2=0\begin{cases} x_0+2=0 \\ y_0+3/2=0 \\ z_0-1/2=0 \end{cases}

The central conicoid has a center (2,3/2,1/2).(-2,-3/2,1/2).


(ii)

a=2,b=1,c=1,a=2, b=-1, c=-1,

f=1/2,g=1/2,h=1/2,f=1/2,g=-1/2,h=1/2,

u=v=w=0u=v=w=0

Then


{2x0+12y012z0=012x0y0+12z0=012x0+12y0z0=0\begin{cases} 2x_0+\dfrac{1}{2}y_0-\dfrac{1}{2}z_0=0 \\ \\ \dfrac{1}{2}x_0-y_0+\dfrac{1}{2}z_0=0 \\ \\ -\dfrac{1}{2}x_0+\dfrac{1}{2}y_0-z_0=0 \end{cases}

The central conicoid has a center (0,0,0).(0,0,0).


(iii)

a=1,b=1,c=1,a=1, b=1, c=-1,

f=3/2,g=3,h=1,f=-3/2,g=-3,h=-1,

u=1/2,v=1,w=5/2u=1/2,v=-1,w=5/2

Then


{x0y03z0+12=0x0+y032z01=03x032y0z0+52=0\begin{cases} x_0-y_0-3z_0+\dfrac{1}{2}=0 \\ \\ -x_0+y_0-\dfrac{3}{2}z_0-1=0 \\ \\ -3x_0-\dfrac{3}{2}y_0-z_0+\dfrac{5}{2}=0 \end{cases}

The central conicoid has a center (49162,9281,19).(\dfrac{49}{162},\dfrac{92}{81},-\dfrac{1}{9}).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS