Given the plane:
𝑥 − 2 𝑦 + 2 𝑧 − 6 = 0 𝑥 − 2𝑦 + 2𝑧 − 6 = 0 x − 2 y + 2 z − 6 = 0
and the sphere equation:
𝑥 2 + 𝑦 2 + 𝑧 2 − 3 𝑥 − 6 𝑧 + 9 = 0 𝑥^2 + 𝑦^2 + 𝑧^2 − 3𝑥 − 6𝑧 + 9 = 0 x 2 + y 2 + z 2 − 3 x − 6 z + 9 = 0
⇒ ( x − 3 2 ) 2 + ( y − 0 ) 2 + ( z − 3 ) 2 = ( 3 2 ) 2 \displaystyle
\Rightarrow
\left(x-\frac{3}{2}\right)^2+\left(y-0\right)^2+(z-3)^2=\left(\frac{3}{2}\right)^2 ⇒ ( x − 2 3 ) 2 + ( y − 0 ) 2 + ( z − 3 ) 2 = ( 2 3 ) 2 by completing the square method
Then the center of the sphere is ( 3 2 , 0 , 3 ) \displaystyle
\left(\frac{3}{2},\ 0,\ 3\right) ( 2 3 , 0 , 3 ) with radius 3 2 . \displaystyle
\frac{3}{2}. 2 3 .
Now, the length of the perpendicular from ( 3 2 , 0 , 3 ) \displaystyle
\left(\frac{3}{2},\ 0,\ 3\right) ( 2 3 , 0 , 3 ) to the plane 𝑥 − 2 𝑦 + 2 𝑧 − 6 = 0 𝑥 − 2𝑦 + 2𝑧 − 6 = 0 x − 2 y + 2 z − 6 = 0 is;
O M = ∣ a x 1 + b y 1 + c z 1 + d ∣ a 2 + b 2 + c 2 \displaystyle
OM=\frac{|ax_1+by_1+cz_1+d|}{\sqrt{a^2+b^2+c^2}} OM = a 2 + b 2 + c 2 ∣ a x 1 + b y 1 + c z 1 + d ∣
Here, a = 1 , b = − 2 , c = 2 , d = − 6 , x 1 = 3 2 , y 1 = 0 , z 1 = 3 \displaystyle
a=1, b=-2, c=2, d=-6, x_1=\frac{3}{2}, y_1=0, z_1=3 a = 1 , b = − 2 , c = 2 , d = − 6 , x 1 = 2 3 , y 1 = 0 , z 1 = 3 . Thus,
O M = ∣ 1 ⋅ 3 2 + ( − 2 ) ⋅ 0 + 2 ⋅ 3 + ( − 6 ) ∣ 1 2 + ( − 2 ) 2 + 2 2 = ∣ 3 2 ∣ 3 = 1 2 \displaystyle
OM=\frac{|1\cdot \frac{3}{2}+(-2)\cdot 0+2\cdot 3+(-6)|}{\sqrt{1^2+(-2)^2+2^2}}=\frac{|\frac{3}{2}|}{3}=\frac{1}{2} OM = 1 2 + ( − 2 ) 2 + 2 2 ∣1 ⋅ 2 3 + ( − 2 ) ⋅ 0 + 2 ⋅ 3 + ( − 6 ) ∣ = 3 ∣ 2 3 ∣ = 2 1
Next, A M 2 = O A 2 − O M 2 = ( 3 2 ) 2 − ( 1 2 ) 2 = 2 \displaystyle
AM^2=OA^2-OM^2=\left(\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2=2 A M 2 = O A 2 − O M 2 = ( 2 3 ) 2 − ( 2 1 ) 2 = 2
The equation of the axis of the cylinder is;
x − α l = y − β m = x − γ n , Here, ( α , β , γ ) = ( 3 2 , 0 , 3 ) , l = 1 , m = − 2 , n = 2 \displaystyle
\frac{x-\alpha}{l}=\frac{y-\beta}{m}=\frac{x-\gamma}{n}, \text{ Here, }(\alpha,\ \beta,\ \gamma)=\left(\frac{3}{2},\ 0,\ 3\right),\ l=1,\ m=-2,\ n=2 l x − α = m y − β = n x − γ , Here, ( α , β , γ ) = ( 2 3 , 0 , 3 ) , l = 1 , m = − 2 , n = 2 .
⇒ x − 3 2 1 = y − 0 − 2 = x − 3 2 , and l 2 + m 2 + n 2 = 9 \displaystyle
\Rightarrow
\frac{x-\frac{3}{2}}{1}=\frac{y-0}{-2}=\frac{x-3}{2}, \text{ and }l^2+m^2+n^2=9 ⇒ 1 x − 2 3 = − 2 y − 0 = 2 x − 3 , and l 2 + m 2 + n 2 = 9
The equation of the Right Circular Cylinder is;
[ n ( y − β ) − m ( z − γ ) ] 2 + [ l ( z − γ ) − n ( x − α ) ] 2 + [ m ( x − α ) − l ( y − β ) ] 2 = A M 2 ( l 2 + m 2 + n 2 ) ⇒ [ 2 ( y − 0 ) + 2 ( z − 3 ) ] 2 + [ 1 ( z − 3 ) − 2 ( x − 3 2 ) ] 2 + [ − 2 ( x − 3 2 ) − 1 ( y − 0 ) ] 2 = 2 ( 9 ) ⇒ [ 2 y + 2 z − 6 ) ] 2 + [ z − 2 x ] 2 + [ − 2 x + 3 − y ] 2 = 18 ⇒ 8 x 2 + 5 y 2 + 5 z 2 + 8 y z − 4 x z + 4 x y − 12 x − 30 y − 24 z + 27 = 0 \displaystyle
[n(y-\beta)-m(z-\gamma)]^2+[l(z-\gamma)-n(x-\alpha)]^2+[m(x-\alpha)-l(y-\beta)]^2=AM^2(l^2+m^2+n^2)\\
\Rightarrow\\
\left[2(y-0)+2(z-3)\right]^2+\left[1(z-3)-2\left(x-\frac{3}{2}\right)\right]^2+\left[-2\left(x-\frac{3}{2}\right)-1(y-0)\right]^2=2(9)\\
\Rightarrow \left[2y+2z-6)\right]^2+\left[z-2x\right]^2+\left[-2x+3-y\right]^2=18\\
\Rightarrow 8x^2+5y^2+5z^2+8yz-4xz+4xy-12x-30y-24z+27=0 [ n ( y − β ) − m ( z − γ ) ] 2 + [ l ( z − γ ) − n ( x − α ) ] 2 + [ m ( x − α ) − l ( y − β ) ] 2 = A M 2 ( l 2 + m 2 + n 2 ) ⇒ [ 2 ( y − 0 ) + 2 ( z − 3 ) ] 2 + [ 1 ( z − 3 ) − 2 ( x − 2 3 ) ] 2 + [ − 2 ( x − 2 3 ) − 1 ( y − 0 ) ] 2 = 2 ( 9 ) ⇒ [ 2 y + 2 z − 6 ) ] 2 + [ z − 2 x ] 2 + [ − 2 x + 3 − y ] 2 = 18 ⇒ 8 x 2 + 5 y 2 + 5 z 2 + 8 yz − 4 x z + 4 x y − 12 x − 30 y − 24 z + 27 = 0
Comments