Find the equation of the cylinder with base π₯2 + π¦2 + π§2 β 3π₯ β 6π§ + 9 = 0, π₯ β 2π¦ + 2π§ β 6 = 0.
Given the plane:
"\ud835\udc65 \u2212 2\ud835\udc66 + 2\ud835\udc67 \u2212 6 = 0"
and the sphere equation:
"\ud835\udc65^2 + \ud835\udc66^2 + \ud835\udc67^2 \u2212 3\ud835\udc65 \u2212 6\ud835\udc67 + 9 = 0"
"\\displaystyle\n\\Rightarrow\n\\left(x-\\frac{3}{2}\\right)^2+\\left(y-0\\right)^2+(z-3)^2=\\left(\\frac{3}{2}\\right)^2"by completing the square method
Then the center of the sphere is "\\displaystyle\n\\left(\\frac{3}{2},\\ 0,\\ 3\\right)" with radius "\\displaystyle\n\\frac{3}{2}."
Now, the length of the perpendicular from "\\displaystyle\n\\left(\\frac{3}{2},\\ 0,\\ 3\\right)" to the plane "\ud835\udc65 \u2212 2\ud835\udc66 + 2\ud835\udc67 \u2212 6 = 0" is;
"\\displaystyle\nOM=\\frac{|ax_1+by_1+cz_1+d|}{\\sqrt{a^2+b^2+c^2}}"
Here, "\\displaystyle\na=1, b=-2, c=2, d=-6, x_1=\\frac{3}{2}, y_1=0, z_1=3". Thus,
"\\displaystyle\nOM=\\frac{|1\\cdot \\frac{3}{2}+(-2)\\cdot 0+2\\cdot 3+(-6)|}{\\sqrt{1^2+(-2)^2+2^2}}=\\frac{|\\frac{3}{2}|}{3}=\\frac{1}{2}"
Next, "\\displaystyle\nAM^2=OA^2-OM^2=\\left(\\frac{3}{2}\\right)^2-\\left(\\frac{1}{2}\\right)^2=2"
The equation of the axis of the cylinder is;
"\\displaystyle\n\\frac{x-\\alpha}{l}=\\frac{y-\\beta}{m}=\\frac{x-\\gamma}{n}, \\text{ Here, }(\\alpha,\\ \\beta,\\ \\gamma)=\\left(\\frac{3}{2},\\ 0,\\ 3\\right),\\ l=1,\\ m=-2,\\ n=2".
"\\displaystyle\n\\Rightarrow\n\\frac{x-\\frac{3}{2}}{1}=\\frac{y-0}{-2}=\\frac{x-3}{2}, \\text{ and }l^2+m^2+n^2=9"
The equation of the Right Circular Cylinder is;
"\\displaystyle\n[n(y-\\beta)-m(z-\\gamma)]^2+[l(z-\\gamma)-n(x-\\alpha)]^2+[m(x-\\alpha)-l(y-\\beta)]^2=AM^2(l^2+m^2+n^2)\\\\\n\\Rightarrow\\\\\n\\left[2(y-0)+2(z-3)\\right]^2+\\left[1(z-3)-2\\left(x-\\frac{3}{2}\\right)\\right]^2+\\left[-2\\left(x-\\frac{3}{2}\\right)-1(y-0)\\right]^2=2(9)\\\\\n\\Rightarrow \\left[2y+2z-6)\\right]^2+\\left[z-2x\\right]^2+\\left[-2x+3-y\\right]^2=18\\\\\n\\Rightarrow 8x^2+5y^2+5z^2+8yz-4xz+4xy-12x-30y-24z+27=0"
Comments
Leave a comment