a. The points π΄,π΅ and πΆ have co-ordinates (β1,2),(1,1) and (2,3) respectively. Sketch the triangle π΄π΅πΆ .By calculating the lengths of the sides of this triangle, determine if it is scalene, isosceles, or equilateral.
b. Find the distance ππ΅, where π is the midpoint of π΄πΆ, and hence find the area of the triangle π΄π΅πΆ.
a.
"BC=\\sqrt{(2-1)^2+(3-1)^2}=\\sqrt{5}"
"AC=\\sqrt{(2-(-1))^2+(3-2)^2}=\\sqrt{10}"
The triangle ABC is isosceles.
b.
"M(\\dfrac{-1+2}{2}, \\dfrac{2+3}{2})"
"M(\\dfrac{1}{2}, \\dfrac{5}{2})"
"BM=\\sqrt{(x_M-x_B)^2+(y_M-y_B)^2}"
"=\\sqrt{(\\dfrac{1}{2}-1)^2+(\\dfrac{5}{2}-1)^2}=\\dfrac{\\sqrt{10}}{2}(units)"
"AC=\\sqrt{(x_C-x_A)^2+(y_C-y_A)^2}"
"=\\sqrt{(2+1)^2+(3-2)^2}=\\sqrt{10}(units)"
"S_{ABC}=\\dfrac{1}{2}BM\\cdot AC=\\dfrac{1}{2}(\\dfrac{\\sqrt{10}}{2})(\\sqrt{10})"
"=\\dfrac{5}{2}({units}^2)"
Comments
Leave a comment