find the equation of the line through the point (5,6) which forma with the axes a triangle whose area is 80.
Let the equation of the line is "y=mx+b, m\\not=0."
"y" -intercept: "x=0, y=b"
Point "(0, b)."
"x" -intercept: "y=0, 0=mx+b=>x=-\\dfrac{b}{m}"
Point "(0, b)."
The area of the triangle
"\\dfrac{b^2}{160}=|m|"
Line passes through the point "(5, 6)"
"m=\\dfrac{6-b}{5}"
"b<6"
"\\dfrac{b^2}{160}=\\dfrac{6-b}{5}"
"b^2+32b-192=0"
"(b+16)^2=448"
"b=-16\\pm8\\sqrt{7}"
"b=-16-8\\sqrt{7}"
"y=\\dfrac{22+8\\sqrt{7}}{5}x-(16+8\\sqrt{7})"
"b=-16+8\\sqrt{7}<6"
"y=\\dfrac{22-8\\sqrt{7}}{5}x+(-16+8\\sqrt{7})"
"\\dfrac{b^2}{160}=-\\dfrac{6-b}{5}"
"b^2-32b+192=0"
"(b-16)^2=64"
"b=16\\pm8"
"b=16-8=8"
"m=\\dfrac{6-8}{5}=-\\dfrac{2}{5}""y=-\\dfrac{2}{5}x+8"
"b=16+8=24"
"m=\\dfrac{6-24}{5}=-\\dfrac{18}{5}""y=-\\dfrac{18}{5}x+24"
Answer:
"y=\\dfrac{22-8\\sqrt{7}}{5}x+(-16+8\\sqrt{7})"
"y=-\\dfrac{2}{5}x+8"
"y=-\\dfrac{18}{5}x+24"
Comments
Leave a comment