Let the equation of the line is y = m x + b , m ≠ 0. y=mx+b, m\not=0. y = m x + b , m = 0.
y y y -intercept: x = 0 , y = b x=0, y=b x = 0 , y = b
Point ( 0 , b ) . (0, b). ( 0 , b ) .
x x x -intercept: y = 0 , 0 = m x + b = > x = − b m y=0, 0=mx+b=>x=-\dfrac{b}{m} y = 0 , 0 = m x + b => x = − m b
Point ( 0 , b ) . (0, b). ( 0 , b ) .
The area of the triangle
A r e a = 1 2 ∣ b ∣ ⋅ ∣ − b m ∣ = 80 Area=\dfrac{1}{2}|b|\cdot|-\dfrac{b}{m}|=80 A re a = 2 1 ∣ b ∣ ⋅ ∣ − m b ∣ = 80
b 2 160 = ∣ m ∣ \dfrac{b^2}{160}=|m| 160 b 2 = ∣ m ∣ Line passes through the point ( 5 , 6 ) (5, 6) ( 5 , 6 )
6 = m ( 5 ) + b 6=m(5)+b 6 = m ( 5 ) + b
m = 6 − b 5 m=\dfrac{6-b}{5} m = 5 6 − b
b < 6 b<6 b < 6
b 2 160 = 6 − b 5 \dfrac{b^2}{160}=\dfrac{6-b}{5} 160 b 2 = 5 6 − b
b 2 + 32 b − 192 = 0 b^2+32b-192=0 b 2 + 32 b − 192 = 0
( b + 16 ) 2 = 448 (b+16)^2=448 ( b + 16 ) 2 = 448
b = − 16 ± 8 7 b=-16\pm8\sqrt{7} b = − 16 ± 8 7 b = − 16 − 8 7 b=-16-8\sqrt{7} b = − 16 − 8 7
m = 6 − ( − 16 − 8 7 ) 5 = 22 + 8 7 5 m=\dfrac{6-(-16-8\sqrt{7})}{5}=\dfrac{22+8\sqrt{7}}{5} m = 5 6 − ( − 16 − 8 7 ) = 5 22 + 8 7
y = 22 + 8 7 5 x − ( 16 + 8 7 ) y=\dfrac{22+8\sqrt{7}}{5}x-(16+8\sqrt{7}) y = 5 22 + 8 7 x − ( 16 + 8 7 )
b = − 16 + 8 7 < 6 b=-16+8\sqrt{7}<6 b = − 16 + 8 7 < 6
m = 6 − ( − 16 + 8 7 ) 5 = 22 − 8 7 5 m=\dfrac{6-(-16+8\sqrt{7})}{5}=\dfrac{22-8\sqrt{7}}{5} m = 5 6 − ( − 16 + 8 7 ) = 5 22 − 8 7
y = 22 − 8 7 5 x + ( − 16 + 8 7 ) y=\dfrac{22-8\sqrt{7}}{5}x+(-16+8\sqrt{7}) y = 5 22 − 8 7 x + ( − 16 + 8 7 )
b > 6 b>6 b > 6
b 2 160 = − 6 − b 5 \dfrac{b^2}{160}=-\dfrac{6-b}{5} 160 b 2 = − 5 6 − b
b 2 − 32 b + 192 = 0 b^2-32b+192=0 b 2 − 32 b + 192 = 0
( b − 16 ) 2 = 64 (b-16)^2=64 ( b − 16 ) 2 = 64
b = 16 ± 8 b=16\pm8 b = 16 ± 8 b = 16 − 8 = 8 b=16-8=8 b = 16 − 8 = 8
m = 6 − 8 5 = − 2 5 m=\dfrac{6-8}{5}=-\dfrac{2}{5} m = 5 6 − 8 = − 5 2
y = − 2 5 x + 8 y=-\dfrac{2}{5}x+8 y = − 5 2 x + 8 b = 16 + 8 = 24 b=16+8=24 b = 16 + 8 = 24
m = 6 − 24 5 = − 18 5 m=\dfrac{6-24}{5}=-\dfrac{18}{5} m = 5 6 − 24 = − 5 18
y = − 18 5 x + 24 y=-\dfrac{18}{5}x+24 y = − 5 18 x + 24
Answer:
y = 22 + 8 7 5 x − ( 16 + 8 7 ) y=\dfrac{22+8\sqrt{7}}{5}x-(16+8\sqrt{7}) y = 5 22 + 8 7 x − ( 16 + 8 7 )
y = 22 − 8 7 5 x + ( − 16 + 8 7 ) y=\dfrac{22-8\sqrt{7}}{5}x+(-16+8\sqrt{7}) y = 5 22 − 8 7 x + ( − 16 + 8 7 )
y = − 2 5 x + 8 y=-\dfrac{2}{5}x+8 y = − 5 2 x + 8
y = − 18 5 x + 24 y=-\dfrac{18}{5}x+24 y = − 5 18 x + 24
Comments