Let the equation of the line is y=mx+b,m=0.
y -intercept: x=0,y=b
Point (0,b).
x -intercept: y=0,0=mx+b=>x=−mb
Point (0,b).
The area of the triangle
Area=21∣b∣⋅∣−mb∣=80
160b2=∣m∣ Line passes through the point (5,6)
6=m(5)+b
m=56−b
b<6
160b2=56−b
b2+32b−192=0
(b+16)2=448
b=−16±87 b=−16−87
m=56−(−16−87)=522+87
y=522+87x−(16+87)
b=−16+87<6
m=56−(−16+87)=522−87
y=522−87x+(−16+87)
b>6
160b2=−56−b
b2−32b+192=0
(b−16)2=64
b=16±8b=16−8=8
m=56−8=−52
y=−52x+8b=16+8=24
m=56−24=−518
y=−518x+24
Answer:
y=522+87x−(16+87)
y=522−87x+(−16+87)
y=−52x+8
y=−518x+24
Comments