Question #281986

A point moves so that is always equidistant from (-5,5) and (-2,2) . Find the equation of its locus




1
Expert's answer
2021-12-22T18:00:58-0500

 The locus of a point equidistant from two fixed points is the perpendicular bisector of  the line segment joining these two fixed points.  In this case, the two fixed points are given as A(5,5) and B(2,2) The midpoint of AB is (72,72) The slope of AB is (52)(5+2)=1 The slope of the line perpendicular to AB is 1 The perpendicular bisector of AB passes through point (72,72) and has a  The equation of the perpendicular bisector of AB is y72=1(x+72). The equation of the perpendicular bisector of AB is xy+7=0.\begin{aligned} &\text { The locus of a point equidistant from two fixed points is the perpendicular bisector of } \\ &\text { the line segment joining these two fixed points. } \\ &\text { In this case, the two fixed points are given as } A(-5,5) \text { and } B(-2,2) \text {. } \\ &\Rightarrow \quad \text { The midpoint of } A B \text { is }\left(-\frac{7}{2}, \frac{7}{2}\right) \text {. } \\ &\text { The slope of } A B \text { is } \frac{(5-2)}{(-5+2)}=-1 \text {. } \\ &\Rightarrow \quad \text { The slope of the line perpendicular to } A B \text { is } 1 \text {. } \\ &\Rightarrow \quad \text { The perpendicular bisector of } A B \text { passes through point }\left(-\frac{7}{2}, \frac{7}{2}\right) \text { and has a } \\ &\Rightarrow \quad \text { The equation of the perpendicular bisector of } A B \text { is } y-\frac{7}{2}=1\left(x+\frac{7}{2}\right) . \\ &\Rightarrow \quad \text { The equation of the perpendicular bisector of } A B \text { is } x-y+7=0 . \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS