Question #285511




Prove that, if a, b, c are non-zero and



(a x b) x c = a x (b x c)



then either



(i) b is perpendicular to both a and c, or



(ii) a and c are parallel or anti-parallel




Note: "x" is cross product


1
Expert's answer
2022-01-11T00:58:34-0500
a×(b×c)=b(ac)c(ab)\vec a \times (\vec b\times \vec c)=\vec b(\vec a\cdot \vec c)-\vec c(\vec a\cdot \vec b)

(a×b)×c=c×(a×b)=a(cb)+b(ca)(\vec a\times \vec b)\times \vec c=-\vec c \times(\vec a\times \vec b) =-\vec a(\vec c\cdot \vec b)+\vec b(\vec c\cdot \vec a)

Given (a×b)×c=a×(b×c).(\vec a\times \vec b)\times \vec c=\vec a \times (\vec b\times \vec c).

Then


a(cb)+b(ca)=b(ac)c(ab)-\vec a(\vec c\cdot \vec b)+\vec b(\vec c\cdot \vec a)=\vec b(\vec a\cdot \vec c)-\vec c(\vec a\cdot \vec b)

Use that b(ca)=b(ac),a,b,c.\vec b(\vec c\cdot \vec a)=\vec b(\vec a\cdot \vec c), \forall\vec a,\vec b,\vec c.

Then


a(cb)=c(ab)-\vec a(\vec c\cdot \vec b)=-\vec c(\vec a\cdot \vec b)




a(cb)=c(ab)\vec a(\vec c\cdot \vec b)=\vec c(\vec a\cdot \vec b)

(i)

Suppose that the nonzero vectors a\vec a and c\vec c are not collinear.

Now suppose that b\vec b is not perpendicular to a\vec a . It means that (ab)0.(\vec a\cdot \vec b)\not=0.

Then (cb)0(\vec c\cdot \vec b)\not=0 and

a=(ab)(cb)c\vec a=\dfrac{(\vec a\cdot \vec b)}{(\vec c\cdot \vec b)}\vec c

If two nonzero vectors a\vec a and c\vec c are not collinear, then we cannot find the number k0k\not=0 such that the a=kc.\vec a=k\vec c. Hence we have a contradiction.

Therefore if vectors a\vec a and c\vec c are not collinear then


cb=0 and ab=0\vec c\cdot \vec b=0\ and \ \vec a\cdot \vec b=0

These mean that b\vec b is perpendicular to both a\vec a and c.\vec c.


(ii)

cb0 or ab0\vec c\cdot \vec b\not=0\ or \ \vec a\cdot \vec b\not=0


Zero vector 0=0v\vec 0=0\cdot\vec v is considered to be parallel to every other vector v.\vec v.

Then the vectors a\vec a and b\vec b are collinear. These mean that a\vec a and c\vec c are parallel or anti-parallel.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS