1 Determine k for which line (k + 2)x + (k^2 -9)y + 3k^2 - 8k + 5 =0 is 1, parallel to y axis 2, parallel to x axis 3, pass through origin 4, pass through (1,1)
1.
parallel to x=0x=0x=0
then:
k2−9=0k^2-9=0k2−9=0
k=±3k=\pm 3k=±3
2.
parallel to y=0y=0y=0
k+2=0k+2=0k+2=0
k=−2k=-2k=−2
3.
3k2−8k+5=03k^2 - 8k + 5 =03k2−8k+5=0
k=8±64−606k=\frac{8\pm \sqrt{64-60}}{6}k=68±64−60
k1=1,k2=5/3k_1=1,k_2=5/3k1=1,k2=5/3
4.
(k+2)+(k2−9)+3k2−8k+5=0(k + 2) + (k^2 -9) + 3k^2 - 8k + 5 =0(k+2)+(k2−9)+3k2−8k+5=0
4k2−7k−2=04k^2-7k-2=04k2−7k−2=0
k=7±49+328k=\frac{7\pm \sqrt{49+32}}{8}k=87±49+32
k1=−1/4,k2=2k_1=-1/4,k_2=2k1=−1/4,k2=2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment