Find length of the arc of the parabola x 2 = 4 a y x^2=4ay x 2 = 4 a y measured from the vertex to one extremity of the Latus-Rectum
Latus-Rectum is a chord that passes through a focus and is parallel to the directrix
Let A be the vertex and L an extremity of the Latus-Rectum so that at A,x=0 and at L,x=2a.
Then:
y = x 2 / ( 4 a ) , y ′ = x / ( 2 a ) y=x^2/(4a),y'=x/(2a) y = x 2 / ( 4 a ) , y ′ = x / ( 2 a )
focus: ( − a , 0 ) (-a,0) ( − a , 0 )
directrix: x = a x=a x = a
arc A L = ∫ 0 2 a 1 + ( y ′ ) 2 d x = ∫ 0 2 a 1 + ( x 2 a ) 2 d x = AL=\int^{2a}_0\sqrt{1+(y')^2}dx=\int^{2a}_0\sqrt{1+(\frac{x}{2a})^2}dx= A L = ∫ 0 2 a 1 + ( y ′ ) 2 d x = ∫ 0 2 a 1 + ( 2 a x ) 2 d x =
x = 2 a s i n h u → d x = 2 a c o s h u d u x=2asinhu\to dx=2acoshudu x = 2 a s inh u → d x = 2 a cos h u d u
= ∫ 2 a c o s h u 4 a 2 s i n h 2 u + 4 a 2 d u = 4 a 2 ∫ c o s h 2 u d u = =\int 2acoshu\sqrt{4a^2sinh^2u+4a^2}du=4a^2\int cosh^2udu= = ∫ 2 a cos h u 4 a 2 s in h 2 u + 4 a 2 d u = 4 a 2 ∫ cos h 2 u d u =
= c o s h u s i n h u + u 2 = ( x ( x / ( 2 a ) ) 2 + 1 2 + s i n h − 1 x 2 a ) ∣ 0 2 a = a ( 2 + s i n h − 1 1 ) =\frac{coshusinhu+u}{2}=(\frac{x\sqrt{(x/(2a))^2+1}}{2}+sinh^{-1}\frac{x}{2a})|^{2a}_0=a(\sqrt 2+sinh^{-1}1) = 2 cos h u s inh u + u = ( 2 x ( x / ( 2 a ) ) 2 + 1 + s in h − 1 2 a x ) ∣ 0 2 a = a ( 2 + s in h − 1 1 )
Comments