1. Find the midpoint of the segment with ends (4, -3, 1) and (-2, 5, 3).
2. Determine whether the vectors u=3i+j-2k and v=2i-4j+k are orthogonal.
3. Describe and sketch 9x^2 + 9y^2 - 4z^2=0
1.
"y_M=\\dfrac{-3+5}{2}=1,"
"z_M=\\dfrac{1+3}{2}=2"
"M(1,1,2)"
2.
Then the vectors "\\vec u=3\\vec i+\\vec j-2\\vec k" and "\\vec v=2\\vec i-4\\vec j+\\vec k" are orthogonal.
3.
Cone
"\\dfrac{z^2}{9}=\\dfrac{x^2}{4}+\\dfrac{y^2}{4}"Horizontal traces are circles.
Vertical traces in the planes "x=k" and "y=k" are hyperbolas if "k\\not=0" but are pairs of lines if "k=0."
Comments
Leave a comment