1. Solve for the area in square units of the right triangle with vertices F(0,7),U(2,-3),N(7,-2)
2. Find the area in square units of a rectangle whose vertices are L(0,6),O(2,-2),V(-2,-3),E(-4,5)
1.
"\\overrightarrow{UF}=\\langle0-2, 7-(-3)\\rangle=\\langle-2,10)\\rangle"
"\\overrightarrow{UN}=\\langle7-2, -2-(-3)\\rangle=\\langle5,1)\\rangle"
"\\overrightarrow{UF}\\cdot\\overrightarrow{UN}=-2(5)+10(1)=0=>\\overrightarrow{UF}\\perp\\overrightarrow{UN}"
The right triangle "FNU"
"|\\overrightarrow{UN}|=\\sqrt{(5)^2+(1)^2}=\\sqrt{26}"
"S=\\dfrac{1}{2}|\\overrightarrow{UF}||\\overrightarrow{UN}|=\\dfrac{1}{2}(2\\sqrt{26})(\\sqrt{26})=26({units}^2)"
2.
"\\overrightarrow{VE}=\\langle-4-(-2), 5-(-3)\\rangle=\\langle-2,8)\\rangle"
"\\overrightarrow{EL}=\\langle0-(-4), 6-5\\rangle=\\langle4,1)\\rangle=\\overrightarrow{VO}"
"\\overrightarrow{OL}=\\langle0-2, 6-(-2)\\rangle=\\langle-2,8)\\rangle=\\overrightarrow{VE}"
The rectangle "VELO"
"|\\overrightarrow{VO}|=\\sqrt{(4)^2+(1)^2}=\\sqrt{17}"
"S=|\\overrightarrow{VE}||\\overrightarrow{VO}|=2\\sqrt{17}(\\sqrt{17})=34({units}^2)"
Comments
Leave a comment