The equation of the circle with center ( a , b ) (a, b) ( a , b ) and radius r r r is
( x − a ) 2 + ( y − b ) 2 = r 2 (x-a)^2+(y-b)^2=r^2 ( x − a ) 2 + ( y − b ) 2 = r 2 Differentiate both sides with respect to x x x
2 ( x − a ) + 2 ( y − b ) y ′ = 0 2(x-a)+2(y-b)y'=0 2 ( x − a ) + 2 ( y − b ) y ′ = 0 Solve for y ′ y' y ′
y ′ = − x − a y − b y'=-\dfrac{x-a}{y-b} y ′ = − y − b x − a The slope of the line tangent to the circle at ( 3 , − 3 ) (3, -3) ( 3 , − 3 )
s l o p e = m = − 3 − a − 3 − b = 3 − a 3 + b slope=m=-\dfrac{3-a}{-3-b}=\dfrac{3-a}{3+b} s l o p e = m = − − 3 − b 3 − a = 3 + b 3 − a The equation of the tangent line tangent to the circle at ( 3 , − 3 ) (3, -3) ( 3 , − 3 ) is
y − ( − 3 ) = 3 − a 3 + b ( x − 3 ) y-(-3)=\dfrac{3-a}{3+b}(x-3) y − ( − 3 ) = 3 + b 3 − a ( x − 3 ) y = 3 − a 3 + b x − 3 ⋅ 3 − a 3 + b − 3 y=\dfrac{3-a}{3+b}x-3\cdot\dfrac{3-a}{3+b}-3 y = 3 + b 3 − a x − 3 ⋅ 3 + b 3 − a − 3 y = 3 − a 3 + b x − 3 ⋅ 6 + b − a 3 + b y=\dfrac{3-a}{3+b}x-3\cdot\dfrac{6+b-a}{3+b} y = 3 + b 3 − a x − 3 ⋅ 3 + b 6 + b − a The line x − 4 y − 15 = 0 x-4y-15=0 x − 4 y − 15 = 0
y = 1 4 x − 15 4 y=\dfrac{1}{4}x-\dfrac{15}{4} y = 4 1 x − 4 15 Then
{ 3 − a 3 + b = 1 4 − 3 ⋅ 6 + b − a 3 + b = − 15 4 \begin{cases}
\dfrac{3-a}{3+b}=\dfrac{1}{4}\\
\\
-3\cdot\dfrac{6+b-a}{3+b}=-\dfrac{15}{4}
\end{cases} ⎩ ⎨ ⎧ 3 + b 3 − a = 4 1 − 3 ⋅ 3 + b 6 + b − a = − 4 15 { b = 9 − 4 a 6 + b − a 3 − a = 5 \begin{cases}
b=9-4a\\
\\
\dfrac{6+b-a}{3-a}=5
\end{cases} ⎩ ⎨ ⎧ b = 9 − 4 a 3 − a 6 + b − a = 5 b = 9 − 4 a , a ∈ R b=9-4a, a\in \R b = 9 − 4 a , a ∈ R
Substitute
( x − a ) 2 + ( y − 9 + 4 a ) 2 = r 2 (x-a)^2+(y-9+4a)^2=r^2 ( x − a ) 2 + ( y − 9 + 4 a ) 2 = r 2
Point ( 3 , − 3 ) (3,-3) ( 3 , − 3 )
( 3 − a ) 2 + ( − 3 − 9 + 4 a ) 2 = r 2 (3-a)^2+(-3-9+4a)^2=r^2 ( 3 − a ) 2 + ( − 3 − 9 + 4 a ) 2 = r 2 9 − 6 a + a 2 + 144 − 96 a + 16 a 2 = r 2 9-6a+a^2+144-96a+16a^2=r^2 9 − 6 a + a 2 + 144 − 96 a + 16 a 2 = r 2 r 2 = 17 a 2 − 102 a + 153 r^2=17a^2-102a+153 r 2 = 17 a 2 − 102 a + 153 Point ( 6 , 2 ) (6,2) ( 6 , 2 )
( 6 − a ) 2 + ( 2 − 9 + 4 a ) 2 = r 2 (6-a)^2+(2-9+4a)^2=r^2 ( 6 − a ) 2 + ( 2 − 9 + 4 a ) 2 = r 2 36 − 12 a + a 2 + 49 − 56 a + 16 a 2 = r 2 36-12a+a^2+49-56a+16a^2=r^2 36 − 12 a + a 2 + 49 − 56 a + 16 a 2 = r 2 r 2 = 17 a 2 − 68 a + 85 r^2=17a^2-68a+85 r 2 = 17 a 2 − 68 a + 85 r 2 = 17 a 2 − 102 a + 153 = 17 a 2 − 68 a + 85 r^2=17a^2-102a+153=17a^2-68a+85 r 2 = 17 a 2 − 102 a + 153 = 17 a 2 − 68 a + 85 34 a = 68 34a=68 34 a = 68 a = 2 a=2 a = 2 b = 9 − 4 ( 2 ) = 1 b=9-4(2)=1 b = 9 − 4 ( 2 ) = 1 r 2 = 17 ( 2 ) 2 − 68 ( 2 ) + 85 = 17 r^2=17(2)^2-68(2)+85=17 r 2 = 17 ( 2 ) 2 − 68 ( 2 ) + 85 = 17 The equation of the circle is
( x − 2 ) 2 + ( y − 1 ) 2 = 17 (x-2)^2+(y-1)^2=17 ( x − 2 ) 2 + ( y − 1 ) 2 = 17
Comments