The equation of the circle with center "(a, b)" and radius "r" is
"(x-a)^2+(y-b)^2=r^2"Differentiate both sides with respect to "x"
"2(x-a)+2(y-b)y'=0"Solve for "y'"
"y'=-\\dfrac{x-a}{y-b}"The slope of the line tangent to the circle at "(3, -3)"
"slope=m=-\\dfrac{3-a}{-3-b}=\\dfrac{3-a}{3+b}"The equation of the tangent line tangent to the circle at "(3, -3)" is
"y-(-3)=\\dfrac{3-a}{3+b}(x-3)""y=\\dfrac{3-a}{3+b}x-3\\cdot\\dfrac{3-a}{3+b}-3""y=\\dfrac{3-a}{3+b}x-3\\cdot\\dfrac{6+b-a}{3+b}"The line "x-4y-15=0"
"y=\\dfrac{1}{4}x-\\dfrac{15}{4}"Then
"\\begin{cases}\n \\dfrac{3-a}{3+b}=\\dfrac{1}{4}\\\\\n\\\\\n -3\\cdot\\dfrac{6+b-a}{3+b}=-\\dfrac{15}{4}\n\\end{cases}""\\begin{cases}\nb=9-4a\\\\\n\\\\\n \\dfrac{6+b-a}{3-a}=5\n\\end{cases}""b=9-4a, a\\in \\R"
Substitute
"(x-a)^2+(y-9+4a)^2=r^2"
Point "(3,-3)"
"(3-a)^2+(-3-9+4a)^2=r^2""9-6a+a^2+144-96a+16a^2=r^2""r^2=17a^2-102a+153"Point "(6,2)"
"(6-a)^2+(2-9+4a)^2=r^2""36-12a+a^2+49-56a+16a^2=r^2""r^2=17a^2-68a+85""r^2=17a^2-102a+153=17a^2-68a+85""34a=68""a=2""b=9-4(2)=1""r^2=17(2)^2-68(2)+85=17"The equation of the circle is
"(x-2)^2+(y-1)^2=17"
Comments
Leave a comment