Let ( r , θ ) (r, \theta) ( r , θ ) - polar coordinates and ( x , y ) (x, y) ( x , y ) - rectangular coordinates.
1) r 1 = − 8 r_{1} = - 8 r 1 = − 8
θ 1 = 2 π 3 \theta_{1} = \dfrac{2\pi}{3} θ 1 = 3 2 π
x 1 = r 1 c o s ( θ 1 ) = ( − 8 ) ∗ c o s ( 2 π 3 ) = ( − 8 ) ∗ ( − 1 2 ) = 4 x_{1} = r_{1}cos(\theta_{1}) = (-8) * cos \left(\dfrac{2\pi}{3}\right) = (-8) * \left(-\dfrac{1}{2}\right) = 4 x 1 = r 1 cos ( θ 1 ) = ( − 8 ) ∗ cos ( 3 2 π ) = ( − 8 ) ∗ ( − 2 1 ) = 4
y 1 = r 1 s i n ( θ 1 ) = ( − 8 ) ∗ s i n ( 2 π 3 ) = ( − 8 ) ∗ ( 3 2 ) = − 4 3 y_{1} = r_{1}sin(\theta_{1}) = (-8) * sin \left(\dfrac{2\pi}{3}\right) = (-8) * \left(\dfrac{\sqrt{3}}{2}\right) = -4\sqrt{3} y 1 = r 1 s in ( θ 1 ) = ( − 8 ) ∗ s in ( 3 2 π ) = ( − 8 ) ∗ ( 2 3 ) = − 4 3
2) x 2 = 3 x_{2} = 3 x 2 = 3
y 2 = − 3 y_{2} = - 3 y 2 = − 3
r 2 > 0 r_{2} > 0 r 2 > 0
0 ≤ θ 2 < 2 π 0 \le \theta_{2} < 2\pi 0 ≤ θ 2 < 2 π
r 2 2 = x 2 2 + y 2 2 = 3 2 + ( − 3 ) 2 = 18 ⇒ r 2 = 3 2 r_{2}^{2} = x_{2}^{2} + y_{2}^{2} = 3^{2} + (-3)^{2} = 18 \rArr r_{2} = 3\sqrt{2} r 2 2 = x 2 2 + y 2 2 = 3 2 + ( − 3 ) 2 = 18 ⇒ r 2 = 3 2
t a n ( θ 2 ) = y 2 x 2 = − 1 tan(\theta_{2}) = \dfrac{y_{2}}{x_{2}} = -1 t an ( θ 2 ) = x 2 y 2 = − 1
x 2 > 0 , y 2 < 0 ⇒ θ 2 = 7 π 4 x_{2} > 0, y_{2} < 0 \rArr \theta_{2} = \dfrac{7\pi}{4} x 2 > 0 , y 2 < 0 ⇒ θ 2 = 4 7 π
3)x 2 + y 2 = 100 x^{2} + y^{2} = 100 x 2 + y 2 = 100
r 2 = 100 ⇒ r = 10 r^{2} = 100 \rArr r = 10 r 2 = 100 ⇒ r = 10
4) 4 r c o s θ + r s i n θ = 8 4 r cos\theta + rsin \theta = 8 4 rcos θ + rs in θ = 8
4 x + y = 8 4x + y = 8 4 x + y = 8
y = − 4 x + 8 y = - 4x + 8 y = − 4 x + 8
Comments