Question #271763

Plot the following points:

P1 (-3, 135°)

P2 (2, )

P3 (4, 405°)

Graph

Sketch the graph of r = 3 − 2cosθ.



1
Expert's answer
2021-12-12T18:15:58-0500

1.



P1(3,135°)P_1 (-3, 135°)

Or



P1(3cos(135°),3sin(135°))P_1 (-3\cos(135\degree), -3\sin(135\degree))






P2(2,3.14/3)P_2 (2, -3.14/3)

Or



P2(2cos(3.14/3),3sin(3.14/3))P_2 (2\cos(-3.14/3), 3\sin(-3.14/3))






P3(4,405°)P_3 (4, 405\degree)

Or



P3(4cos(405°),4sin(405°))P_3 (4\cos(405\degree), 4\sin(405\degree))r=32cosθr = 3 − 2\cosθθ(rad)0π/6π/4π/3π/2r1333223\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} \theta (rad) & 0 & \pi/6 & \pi/4 & \pi/3 & \pi/2 \\ \hline r & 1 & 3-\sqrt{3} & 3-\sqrt{2} & 2 & 3 \\ \end{array}θ(rad)2π/33π/45π/6πr43+23+35\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \theta (rad) & 2\pi/3 & 3\pi/4 & 5\pi/6 & \pi \\ \hline r & 4 & 3+\sqrt{2} & 3+\sqrt{3} & 5 \\ \end{array}θ(rad)7π/65π/47π/33π/2r3+33+243\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \theta (rad) & 7\pi/6 & 5\pi/4 & 7\pi/3 & 3\pi/2 \\ \hline r & 3+\sqrt{3} & 3+\sqrt{2} & 4 & 3 \\ \end{array}θ(rad)5π/37π/411π/62πr232331\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \theta (rad) & 5\pi/3 & 7\pi/4 & 11\pi/6 & 2\pi \\ \hline r & 2 & 3-\sqrt{2} & 3-\sqrt{3} & 1 \\ \end{array}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS