3. The equation of the line parallel to 5 x + 6 y – 10 = 0 5x + 6y – 10 = 0 5 x + 6 y –10 = 0 is
5 x + 6 y + b = 0 5x + 6y +b = 0 5 x + 6 y + b = 0 Distance from point ( − 3 , 7 ) (-3,7) ( − 3 , 7 ) to the line is
d = ∣ 5 ( − 3 ) + 6 ( 7 ) + b ∣ 5 2 + 6 2 = 61 d=\dfrac{|5(-3)+6(7)+b|}{\sqrt{5^2+6^2}}=61 d = 5 2 + 6 2 ∣5 ( − 3 ) + 6 ( 7 ) + b ∣ = 61
∣ b − 27 ∣ = 61 61 |b-27|=61\sqrt{61} ∣ b − 27∣ = 61 61
b = 27 + 61 61 b=27+61\sqrt{61} b = 27 + 61 61 The equation of the line is
5 x + 6 y + 27 + 61 61 = 0 5x + 6y +27+61\sqrt{61} = 0 5 x + 6 y + 27 + 61 61 = 0
b = 27 − 61 61 b=27-61\sqrt{61} b = 27 − 61 61 The equation of the line is
5 x + 6 y + 27 − 61 61 = 0 5x + 6y +27-61\sqrt{61} = 0 5 x + 6 y + 27 − 61 61 = 0
4. The equation of the line parallel to 3 x + 4 y = 20 3x + 4y = 20 3 x + 4 y = 20 is
3 x + 4 y = b 3x + 4y = b 3 x + 4 y = b
Take the point ( 4 , 2 ) (4, 2) ( 4 , 2 )
3 ( 4 ) + 4 ( 2 ) = 20 , T r u e 3(4) + 4(2) = 20, True 3 ( 4 ) + 4 ( 2 ) = 20 , T r u e
Distance from point ( 4 , 2 ) (4, 2) ( 4 , 2 ) to the line 3 x + 4 y = b 3x + 4y = b 3 x + 4 y = b is
d = ∣ 3 ( 4 ) + 4 ( 2 ) − b ∣ 3 2 + 4 2 = 5 d=\dfrac{|3(4)+4(2)-b|}{\sqrt{3^2+4^2}}=5 d = 3 2 + 4 2 ∣3 ( 4 ) + 4 ( 2 ) − b ∣ = 5
∣ 20 − b ∣ = 25 |20-b|=25 ∣20 − b ∣ = 25
b = − 5 b=-5 b = − 5 The equation of the line parallel to 3 x + 4 y = 20 3x + 4y = 20 3 x + 4 y = 20 is
3 x + 4 y = − 5 3x + 4y = -5 3 x + 4 y = − 5
b = 45 b=45 b = 45 The equation of the line parallel to 3 x + 4 y = 20 3x + 4y = 20 3 x + 4 y = 20 is
3 x + 4 y = 45 3x + 4y = 45 3 x + 4 y = 45
Comments