Question #251897

You are given the following three points A(1,−3,5), B(4,-11,1) and C(-3,8,5).

Which of the following statements are true?


  1. The vector equation of the line AB is r=(1,3,5)+λ(3,8,4)\mathbf{r}=(1,-3,5)+\lambda (3,-8,-4) , where λ\lambda is a parameter.
  2. The three points  A, B  and C ie on the same straight line
  3. AB×AC=(44,16,1)\underline{AB} \times \underline{AC}=(44,16,1)
  4. Lines AB and AC are perpendicular.
  5. The equation of a plane passing through the points AB and C is 44x+16y+z=144x+16y+z=1
1
Expert's answer
2021-10-18T07:40:42-0400

 Given three points are  A(1,−3,5), B(4,-11,1) and C(-3,8,5).

Let us check every statement true or false individually.

Statement-1.

Vector equation of line AB is

r\textbf{r} = (1,-3,5) + λ\lambda (4-1, -11+3,1-5)

=> r\textbf{r} = (1,-3,5) + λ\lambda (3, -8,-4)

So Statement-1 is true\textbf{true} .

Statement-2.

The three points A, B and C will lie on the same straight line if position vector of C satisfy the equation of AB.

i.e. if (-3,8,5)=(1,-3,5)+λ\lambda (3,-8,4)

i.e if (-3,8,5)=(1+3λ\lambda ,-3-8λ\lambda ,5+4λ\lambda )

i.e if -3 = 1+3λ\lambda , 8=-3-8λ\lambda ,5=5+4λ\lambda

i.e if λ\lambda = 43-\frac{4}{3} , λ\lambda =118-\frac{11}{8} , λ\lambda =0

As values of λ\lambda are different, position vector of C doesn't satisfy the equation of line AB.

So statement-2 is false\textbf{false}

Statement-3.

AB\overrightarrow{AB} = (4-1, -11+3,1-5)=(3,-8,-4)

AC\overrightarrow{AC} = (-3-1,8+3,5-5)=(-4,11,0)

AB\overrightarrow{AB} XAC\overrightarrow{AC} = i^j^k^3844110\begin{vmatrix} \hat{i} &\hat{j} &\hat{k}\\ 3 & -8&-4\\-4&11&0 \end{vmatrix}

= i^\hat{i} (44)+j^\hat{j} (16-0)+k^\hat{k} (33-32) = (44, 16, 1)

So Statement-3 is true\textbf{true} .

Statement-4.

If line AB and line AC are perpendicular then AB.\overrightarrow{AB}. AC\overrightarrow{AC} = 0.

AB\overrightarrow{AB} .AC\overrightarrow{AC} = (3,-8,-4).(-4,11,0)

=-12-88-0=-100 ≠0

So line AB is not perpendicular to line AC

So Statement-4 is false\textbf{false}

Statement-5

As every linear equation of x, y, z represents a plane and one and only one plane can be drawn through three non collinear points, equation of plane through A,B and C will be 44x+16y+z=1

If co-ordinates of the points A, B,C satisfy the equation of plane 44x+16y+z=1 .

For point A, 44.(1)+16.(-3)+1.(5)=1

=> 44-48+5=1

=> -4+5=1

=> 1=1

So A lies on the given plane.

For point B, 44.(4)+16.(-11)+1.(1)=1

=> 176-176+1=1

=> 1=1

So B lies on the given plane

For point C, 44.(-3)+16.(8)+1.(5)=1

=> -132+128+5=1

=> 1=1

So C lies on the given plane

So equation of plane through A, B, C is 44x+16y+z=1 .

Therefore Statement-5 is true\textbf{true} .





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS