The sum of the distances of a moving point from (3, 0) and (-3, 0) is 8. Find its equation
Let the coordinates of the moving point be "(x,y)."
Therefore, according to the question:
"\\sqrt{(x-3)^2+y^2}+\\sqrt{(x+3)^2+y^2}=8\\\\\n\\Rightarrow \\sqrt{(x-3)^2+y^2}=8-\\sqrt{(x+3)^2+y^2}"
Squaring both sides, we get:
"(x-3)^2+y^2=64+(x+3)^2+y^2-16\\sqrt{(x+3)^2+y^2}\\\\\n\\Rightarrow -6x=64+6x-16\\sqrt{(x+3)^2+y^2}\\\\\n\\Rightarrow 16\\sqrt{(x+3)^2+y^2}=12x+64\\\\\n\\Rightarrow 4\\sqrt{(x+3)^2+y^2}=3x+16"
Squaring both sides, we get:
"16(x+3)^2+16y^2=9x^2+256+96x\\\\\n\\Rightarrow 7x^2+16y^2=112\\\\\n\\Rightarrow \\frac{x^2}{16}+\\frac{y^2}{7}=1"
Comments
Leave a comment