The sum of the distances of a moving point from (3, 0) and (-3, 0) is 8. Find its equation
Let the coordinates of the moving point be (x,y).(x,y).(x,y).
Therefore, according to the question:
(x−3)2+y2+(x+3)2+y2=8⇒(x−3)2+y2=8−(x+3)2+y2\sqrt{(x-3)^2+y^2}+\sqrt{(x+3)^2+y^2}=8\\ \Rightarrow \sqrt{(x-3)^2+y^2}=8-\sqrt{(x+3)^2+y^2}(x−3)2+y2+(x+3)2+y2=8⇒(x−3)2+y2=8−(x+3)2+y2
Squaring both sides, we get:
(x−3)2+y2=64+(x+3)2+y2−16(x+3)2+y2⇒−6x=64+6x−16(x+3)2+y2⇒16(x+3)2+y2=12x+64⇒4(x+3)2+y2=3x+16(x-3)^2+y^2=64+(x+3)^2+y^2-16\sqrt{(x+3)^2+y^2}\\ \Rightarrow -6x=64+6x-16\sqrt{(x+3)^2+y^2}\\ \Rightarrow 16\sqrt{(x+3)^2+y^2}=12x+64\\ \Rightarrow 4\sqrt{(x+3)^2+y^2}=3x+16(x−3)2+y2=64+(x+3)2+y2−16(x+3)2+y2⇒−6x=64+6x−16(x+3)2+y2⇒16(x+3)2+y2=12x+64⇒4(x+3)2+y2=3x+16
16(x+3)2+16y2=9x2+256+96x⇒7x2+16y2=112⇒x216+y27=116(x+3)^2+16y^2=9x^2+256+96x\\ \Rightarrow 7x^2+16y^2=112\\ \Rightarrow \frac{x^2}{16}+\frac{y^2}{7}=116(x+3)2+16y2=9x2+256+96x⇒7x2+16y2=112⇒16x2+7y2=1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments