Question 5:
Assume that a vector a of length ||a|| = 3 units. In addition, a points in a direction that is 135◦ counterclockwise from the positive x-axis, and a vector b in th xy-plane has a length ||b|| = 1 3 and points in the positive y-direction.
(5.1) Find a ·b.
(5.2) Calculate the distance between the point (−1,√3) and the line 2x-2y-5=0
Solution.
"5.1.||a||=3;"
"||b||=1\/3;"
"<(\\overrightarrow{a},\\overrightarrow{b})=135-90=45^o;"
"\\overrightarrow{a}\\sdot\\overrightarrow{b}=||\\overrightarrow{a}||\\sdot||\\overrightarrow{b}||cos<(\\overrightarrow{a},\\overrightarrow{b});"
"\\overrightarrow{a}\\sdot\\overrightarrow{b}=3\\sdot1\/3\\sdot\\dfrac{\\sqrt{2}}{2}=\\dfrac{\\sqrt{2}}{2};"
"5.2. M(-1;\\sqrt{3});"
"2x-2y-5=0;"
"d=\\dfrac{|AM_x+BM_y+C|}{\\sqrt{A^2+B^2}};"
"d=\\dfrac{|2\\sdot(-1)-2\\sdot\\sqrt{3}-5|}{\\sqrt{2^2+(-2)^2}}=\\dfrac{7+2\\sqrt{3}}{2\\sqrt{2}}=\\dfrac{7\\sqrt{2}+2\\sqrt{6}}{4};"
Answer:"5.1. \\overrightarrow{a}\\sdot\\overrightarrow{b}=\\dfrac{\\sqrt{2}}{2};"
"5.2.d=\\dfrac{7\\sqrt{2}+2\\sqrt{6}}{4}."
Comments
Leave a comment