Question 5.1 :
The points through which the plane passing is,
P0 = (1, −2, 3)
Normal vector to the plane is,
n =< 3, 1, −1 >
The vector equation of plane is given by,
( r → − a → ) . n → = 0 (\overrightarrow{r}-\overrightarrow{a}).\overrightarrow{n}=0 ( r − a ) . n = 0
r → = x i → + y j → + z k → \overrightarrow{r}=x\overrightarrow{i}+y\overrightarrow{j}+z\overrightarrow{k} r = x i + y j + z k is the position vector for any point (x,y,z) in the plane.
a → \overrightarrow{a} a is the position vector of point through which plane passing n → \overrightarrow{n} n is the normal vector to the plane.
Position vector of point P0(1,-2,3) is,
a → = i ^ − 2 j ^ + 3 k ^ n → = 3 i ^ + j ^ − k ^ \overrightarrow{a}=\hat{i}-2\hat{j}+3\hat{k}\\\overrightarrow{n}=3\hat{i}+\hat{j}-\hat{k} a = i ^ − 2 j ^ + 3 k ^ n = 3 i ^ + j ^ − k ^
the vector equation of plane is,
( r → − i ^ − 2 j ^ + 3 k ^ ) ) . ( 3 i ^ + j ^ − k ^ ) (\overrightarrow{r}-\hat{i}-2\hat{j}+3\hat{k})).(3\hat{i}+\hat{j}-\hat{k}) ( r − i ^ − 2 j ^ + 3 k ^ )) . ( 3 i ^ + j ^ − k ^ )
this can also be written as,
[ ( x i ^ + y j ^ + z k ^ ) − ( i ^ − 2 j ^ + 3 k ^ ) ] . ( 3 i ^ + j ^ − k ^ ) = [ ( x − 1 ) i ^ + ( y + 2 ) j ^ + ( z − 3 ) k ^ ] . ( 3 i ^ + j ^ − k ^ ) [(x\hat{i}+y\hat{j}+z\hat{k})-(\hat{i}-2\hat{j}+3\hat{k})].(3\hat{i}+\hat{j}-\hat{k})\\=[(x-1)\hat{i}+(y+2)\hat{j}+(z-3)\hat{k}].(3\hat{i}+\hat{j}-\hat{k}) [( x i ^ + y j ^ + z k ^ ) − ( i ^ − 2 j ^ + 3 k ^ )] . ( 3 i ^ + j ^ − k ^ ) = [( x − 1 ) i ^ + ( y + 2 ) j ^ + ( z − 3 ) k ^ ] . ( 3 i ^ + j ^ − k ^ )
by taking the dot product of above equation, we will obtain the Cartesian form of equation of plane.
2)
x − 2 ( y − 1 ) + 3 z = − 1 y = − 2 x − 1 y = − 2 x − 1 x + 4 x + 4 + 3 z = − 1 y = − 2 x − 1 z = − 5 3 x − 5 3 < 0 , − 1 , − 5 3 > + t < 1 , − 2 , − 5 3 > T h e p l a n e c o n t a i n s t h e l i n e x = − 1 + 3 t , y = 5 + 3 t , z = 2 + t t = 0 : P o i n t ( − 1 , 5 , 2 ) t = − 2 : P o i n t ( − 7 , − 1 , 0 ) − a + 5 b + 2 c + d = 0 − 7 a − b + d = 0 b = − 7 a + d − a − 35 a + 5 d + 2 c + d = 0 b = − 7 a + d c = 18 a − 3 d S u b s t i t u t e a + 14 a − 2 d − 30 a + 5 d = 0 d = 5 a I f a = 1 d = 5 b = − 2 c = 3 T h e e q u a t i o n f o r t h e p l a n e i s x − 2 y + 3 z + 5 = 0 x−2(y−1)+3z=−1\\
y = −2x −1\\
y=-2x-1\\
x+4x+4+3z=-1\\
y=-2x-1\\
z=-\dfrac{5}{3}x-\dfrac{5}{3}\\
<0,−1,−\frac{5}{3}>+t<1,−2,−\frac{5}{3}>\\
The\ plane\ contains\ the\ line\\
x = −1 + 3t, y = 5 + 3t, z = 2 + t\\
t=0: Point(-1, 5, 2)\\
t=-2: Point(-7, -1, 0)\\
-a+5b+2c+d=0\\
-7a-b+d=0\\
b=-7a+d\\
-a-35a+5d+2c+d=0\\
b=-7a+d\\
c=18a-3d\\
Substitute\\
a+14a-2d-30a+5d=0\\
d=5a\\
If\ a=1\\
d=5\\
b=-2\\
c=3\\
The\ equation\ for\ the\ plane\ is\\
x-2y+3z+5=0 x − 2 ( y − 1 ) + 3 z = − 1 y = − 2 x − 1 y = − 2 x − 1 x + 4 x + 4 + 3 z = − 1 y = − 2 x − 1 z = − 3 5 x − 3 5 < 0 , − 1 , − 3 5 > + t < 1 , − 2 , − 3 5 > T h e pl an e co n t ain s t h e l in e x = − 1 + 3 t , y = 5 + 3 t , z = 2 + t t = 0 : P o in t ( − 1 , 5 , 2 ) t = − 2 : P o in t ( − 7 , − 1 , 0 ) − a + 5 b + 2 c + d = 0 − 7 a − b + d = 0 b = − 7 a + d − a − 35 a + 5 d + 2 c + d = 0 b = − 7 a + d c = 18 a − 3 d S u b s t i t u t e a + 14 a − 2 d − 30 a + 5 d = 0 d = 5 a I f a = 1 d = 5 b = − 2 c = 3 T h e e q u a t i o n f or t h e pl an e i s x − 2 y + 3 z + 5 = 0
Comments