Question #211615

(5.1) Find the vector form of the equation of the plane that passes through the point P0 = (1, −2, 3)

and has normal vector ~n =< 3, 1, −1 >.

(5.2) Find an equation for the plane that contains the line x = −1 + 3t, y = 5 + 3t, z = 2 + t and is

parallel to the line of intersection of the planes x −2(y −1) + 3z = −1 and y = −2x −1 = 0.


1
Expert's answer
2021-08-16T11:14:48-0400

Question 5.1 :

The points through which the plane passing is,

P0 = (1, −2, 3)

Normal vector to the plane is,

n =< 3, 1, −1 >


The vector equation of plane is given by,


(ra).n=0(\overrightarrow{r}-\overrightarrow{a}).\overrightarrow{n}=0

r=xi+yj+zk\overrightarrow{r}=x\overrightarrow{i}+y\overrightarrow{j}+z\overrightarrow{k} is the position vector for any point (x,y,z) in the plane.

a\overrightarrow{a} is the position vector of point through which plane passing n\overrightarrow{n} is the normal vector to the plane.


Position vector of point P0(1,-2,3) is,

a=i^2j^+3k^n=3i^+j^k^\overrightarrow{a}=\hat{i}-2\hat{j}+3\hat{k}\\\overrightarrow{n}=3\hat{i}+\hat{j}-\hat{k}


the vector equation of plane is,

(ri^2j^+3k^)).(3i^+j^k^)(\overrightarrow{r}-\hat{i}-2\hat{j}+3\hat{k})).(3\hat{i}+\hat{j}-\hat{k})


this can also be written as,

[(xi^+yj^+zk^)(i^2j^+3k^)].(3i^+j^k^)=[(x1)i^+(y+2)j^+(z3)k^].(3i^+j^k^)[(x\hat{i}+y\hat{j}+z\hat{k})-(\hat{i}-2\hat{j}+3\hat{k})].(3\hat{i}+\hat{j}-\hat{k})\\=[(x-1)\hat{i}+(y+2)\hat{j}+(z-3)\hat{k}].(3\hat{i}+\hat{j}-\hat{k})



by taking the dot product of above equation, we will obtain the Cartesian form of equation of plane.


2)

x2(y1)+3z=1y=2x1y=2x1x+4x+4+3z=1y=2x1z=53x53<0,1,53>+t<1,2,53>The plane contains the linex=1+3t,y=5+3t,z=2+tt=0:Point(1,5,2)t=2:Point(7,1,0)a+5b+2c+d=07ab+d=0b=7a+da35a+5d+2c+d=0b=7a+dc=18a3dSubstitutea+14a2d30a+5d=0d=5aIf a=1d=5b=2c=3The equation for the plane isx2y+3z+5=0x−2(y−1)+3z=−1\\ y = −2x −1\\ y=-2x-1\\ x+4x+4+3z=-1\\ y=-2x-1\\ z=-\dfrac{5}{3}x-\dfrac{5}{3}\\ <0,−1,−\frac{5}{3}>+t<1,−2,−\frac{5}{3}>\\ The\ plane\ contains\ the\ line\\ x = −1 + 3t, y = 5 + 3t, z = 2 + t\\ t=0: Point(-1, 5, 2)\\ t=-2: Point(-7, -1, 0)\\ -a+5b+2c+d=0\\ -7a-b+d=0\\ b=-7a+d\\ -a-35a+5d+2c+d=0\\ b=-7a+d\\ c=18a-3d\\ Substitute\\ a+14a-2d-30a+5d=0\\ d=5a\\ If\ a=1\\ d=5\\ b=-2\\ c=3\\ The\ equation\ for\ the\ plane\ is\\ x-2y+3z+5=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS