Let S ≡ 4x2 −9y2 −36 = 0 and S' ≡ y2 −4x = 0 be two conics. Under what conditions on k, will the conic S+kS' = 0 represent:
i) an ellipse?
ii) a hyperbola?
"The \\space conic \\space \\\\Ax2+Bxy+Cy2+Dx+Ey+F=0\n\\\\\nis \\space an \\space ellipse \\space if \\space \\\\\nB^2<4AC \\\\and \\\\\na \\space hyperbola \\space if \\\\\nB^2-4AC>0\n\\\\\nAccording \\space to \\space question \\\\\nS+kS'=4x^2+0xy+(k-9)y^2-4kx+0y-36=0\n\\\\\nis \\space an \\space ellipse \\space if \\\\\n\n0^2<4(4)(k-9) \\\\\n\n0<16k-144 \\\\\n\n144<16k \\\\\n\nk>9 \\\\\\space ......conditions \\space on \\space k, for \\space an \\space ellipse\\\\\nNow \\\\\nan \\space a \\space hyperbola \\space if \\\\\n\n0^2-4(4)(k-9)>0 \\\\\n\n0-16k+144>0 \\\\\n\n-16k>-144 \\\\\n\nk<9 \\\\\\space ......conditions \\space on \\space k, for \\space an \\space hyperbola\\\\"
Comments
Leave a comment