Question #202790

Find the equation of the right circular cone whose vertex is (1,−1,2), the axis is

(x−1 /2) =( y+1 /1) = (z−2 /−2)

and the semi-vertical angle is 45◦ .


1
Expert's answer
2021-06-09T10:20:33-0400

Let P(x,y,z)P(x,y,z) be any point on the cone. The direction ratio from the origin(axis) to point on the cone is x1,y+1,z2x-1, y+1, z-2 and the direction ratio of the axis are 2,1,2.2,1,-2.


Given the semi-vertical angle is 45◦


cos45°=12\cos 45\degree=\dfrac{1}{\sqrt{2}}

=(x1)(2)+(y+1)(1)+(z2)(2))(x1)2+(y+1)2+(z2)2(2)2+(1)2+(2)2=\dfrac{(x-1)(2)+( y+1)(1)+( z-2)(-2))}{\sqrt{(x-1)^2+(y+1)^2+(z-2)^2}\sqrt{(2)^2+(1)^2+(-2)^2}}

2(2x+y2z+3)2=9((x1)2+(y+1)2+(z2)2)2(2x+y-2z+3)^2=9((x-1)^2+(y+1)^2+(z-2)^2)




8xy16xz+8x2+24x+2y2+12y8yz8xy-16xz+8x^2+24x+2y^2+12y-8yz

+8z224z+18=9x218x+9+8z^2-24z+18=9x^2-18x+9

+9y2+18y+9+9z236z+36+9y^2+18y+9+9z^2-36z+36



On simplifying this we get


x2+7y2+z28xy+8yz+16xzx^2+7y^2+z^2-8xy+8yz+16xz

42x+6y12z+36=0-42x+6y-12z+36=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS