Question #202774

Show that the angle between the two lines in which the plane x−y+2z = 0 intersects the cone

x2 +y2 −4z2 +6yz = 0 is tan −1 (√ 6 /7)


1
Expert's answer
2021-06-08T09:01:10-0400

Answer:-

The lines of intersection have equation

{x2+y24z2+6yz=0;xy+2z=0;z=t,\begin{cases} x^2+y^2-4z^2+6yz=0; \\ x-y+2z=0; \\ z=t, \end{cases}

where 𝑡 ∈ ℝ.

The system  {x2+y24z2+6yz=0;xy+2z=0;z=t,\begin{cases} x^2+y^2-4z^2+6yz=0; \\ x-y+2z=0; \\ z=t, \end{cases}

is equivalent to {x2+y24t2+6yt=0;x=y2t;z=t,\begin{cases} x^2+y^2-4t^2+6yt=0; \\ x=y-2t; \\ z=t, \end{cases}


or {y34yt+4t2+y24t2+6yt=0;x=y2t;z=t,\begin{cases} y^3-4yt+4t^2+y^2-4t^2+6yt=0; \\ x=y-2t; \\ z=t, \end{cases}


or {y(y+t)=0;x=y2t;z=t,\begin{cases} y(y+t)=0; \\ x=y-2t; \\ z=t, \end{cases}

we obtain two line

{x=2t;y=0;z=t,\begin{cases} x=-2t; \\ y=0; \\ z=t, \end{cases} and {x=3t;y=t;z=t,\begin{cases} x=-3t; \\ y=-t; \\ z=t, \end{cases}

where 𝑡 is real parameter. The direction vector of the first line is 𝑣1 = (−2,0,1) and the direction vector of the second line is 𝑣2 = (−3, −1,1). The angle between the two lines is equal to the angle between the direction vectors of this two lines.


cos(𝑣̂1, 𝑣2 ) =v1.v2v1v2=6+1511=4955\frac{v_1.v_2}{|v_1||v_2|}=\frac{6+1}{\sqrt{5}\sqrt{11}}=\sqrt{\frac{49}{55}}

tan2(𝑣̂1, 𝑣2 ) =1cos2(v1.v2)1=55491=649\frac{1}{cos^2(v_1.v_2)}-1=\frac{55}{49}-1=\frac{6}{49}

The (𝑣̂1, 𝑣2 ) = arctan67√6 \over7 , as cos(𝑣̂1, 𝑣2 ) is positive. Therefore, the angle between two lines is equal to arctan 67√6\over 7 =  tan −1 (67√ 6 \over7 )


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS